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Abstract

Designing and analyzing electrically large reflectors poses numerically complex

problems because the reflector must be sampled finely to obtain an accurate solution,

causing an unwieldy number of samples. In addition to these complexities, a custom-

shaped reflector poses a new analysis problem. Previously developed methods and theorems

including Geometric Optics, Ray-Tracing, Surface Equivalence Theorems, Image Theory,

and Physical Optics can be applied to these custom-shaped reflectors however. These

methods all share in common their capability to provide accurate results in the analysis

of electrically large structures. In this thesis, two custom-shaped reflector concepts are

explored which include a rectangular shaped, spherically contoured reflector with largest

dimension of 305 meters and a cross-shaped, parabolically contoured reflector with largest

dimension of 150 meters. Each reflector is intended to operate in the Institute of Electrical

and Electronics Engineers (IEEE) L-Band. The reflectors produced differing results, but the

same methods apply to each. The motivation for pursuing these custom-shaped reflectors is

for earth-based and space-based satellite communications respectively. In this thesis, the

plane wave analysis and the ray tracing results are presented for each reflector, and the initial

feed design results for the cross-shaped reflector are presented.
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THE DESIGN AND ANALYSIS OF ELECTRICALLY LARGE

CUSTOM-SHAPED REFLECTOR ANTENNAS

I. Introduction

For this research, two reflector antenna design concepts are explored. The first is a

rectangular shaped, spherically contoured reflector (spherical reflector), and the second

is a cross-shaped, parabolically contoured reflector (sparse reflector). Each reflector is

comparatively large with respect to the wavelengths of operation making them electrically

large structures. Also, both reflectors have a custom-shaped cross-section as opposed to the

typical circular cross-section due to their intended applications [2] [4] [5]. The aim of this

research is to provide a design and analysis of these reflectors by studying the geometry and

focal regions of both, and devising feeding antenna designs with analysis. Both reflector

antennas pose a technical challenge where conventional design and analysis methods can be

applied using the proper approximations and assumptions to be described later.

1.1 Background

Satellite communications require antennas that have high directivity to overcome the

attenuation of signals due to the long travel distance and the earth’s atmosphere. The

most suitable antennas to provide high directivity are reflector antennas. These antennas

are analogous to aperture antennas, but have the added benefit of higher directivity than

that of typical aperture antennas [6]. A reflector antenna can also be made very large in

order to increase the directivity. Reflector antenna directivity is directly proportional to the

operational frequency and the effective reflector size [2] [6]. The reflector effective size

can be determined from the physical size of the reflector [2] [6]. For the IEEE L-Band

1



frequency range, which is the particular frequency band of interest for this research, and the

need for high directivity, the reflectors will be comparatively much larger than a wavelength

in physical size, or electrically large.

1.1.1 Rectangular Shaped, Spherically Contoured Reflector.

The spherical reflector antenna is intended to be an earth-based satellite communications

antenna. To avoid moving the spherical reflector it is typical to instead move the feeding

structure to perform antenna steering. Steering in this manner is feasible because spherical

reflectors do not direct all incident energy to a particular focal point, but rather to a

line (paraxial) that shifts depending on the direction of incident energy on the reflector.

In addition, spherical reflector antennas have a wide angle of steering as compared

to parabolically contoured reflectors, which has motivated much research resulting in

optimized designs, such as the Arecibo Observatory in Puerto Rico. A spherical reflector

antenna system of similar scale to the Arecibo antenna can be used efficiently for satellite

communications with the proper design of a feed antenna or system. However, the challenge

in designing a proper feed antenna is correcting for inherent spherical aberrations of the

reflector. Spherical aberrations are imperfections in the phase of a reflected wave front

measured at the paraxial focus, or half the radius of curvature of the reflector [7]. The

aberrations become even more prominent with electrically large spherical reflectors [2].

This research studies these aberrations to be able to propose a feeding structure design for

the spherical reflector.

1.1.2 Cross-Shaped, Parabolically Contoured Reflector.

The sparse reflector is intended to be a space-based communications antenna. A major

trade-off in designing and building large reflector antennas is their ability to deploy. Typically,

a large reflector antenna is a solid structure that cannot be made smaller for deployability [2]

[4] [6] [8]. In order to make a large reflector antenna more easily deployable, limiting the

aperture to a sparse cross-section with foldable segments is a possible solution. The term
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sparse used here is defined as a subset of a circular or complete aperture and in particular,

a cross-shaped subset. Other work in deployable reflector antennas has been done, but

none has proposed a sparse cross-section reflector. However, other published work includes

folding reflector antennas comprised of flat plates that resemble a complete aperture when

deployed [9] [10] [11], folding mesh reflectors [12], and inflatable reflector antennas [13].

Each of these concepts is different from the cross-shaped reflector concept and is much

smaller in scale.

1.2 Assumptions, Limitations, and Standards

A convention used to approximate the design of electrically large reflector antennas is

to use optical approximations. In particular, for the reflectors considered here:

1. The surface area is assumed to be much greater than the edge surface area (10λ wide
ring) for the reflector [14].

2. The reflector is much larger than a wavelength (L-Band) [14].

3. The reflector is symmetric about the optical axis (axis extending from the center of
the reflector) [14].

4. The radius of curvature for the spherical reflector and the focal length for the sparse
reflector is large in comparison to a wavelength [14].

5. The incident waves are planar or their deviation from planar is less than 1/4 of a
wavelength [14].

These assumptions allow the use of Geometric Optics (GO) and ray-tracing. Ray-

tracing assumes incident energy upon a reflecting surface can be represented as rays, and all

reflections are treated using Snell’s Law of Reflection [1] [15].

With regards to the sparse reflector, the Physical Optics (PO) approximation is used.

This approximation assumes that the reflector is electrically large and is a good conducting

material [2] [16] [17]. In particular, for this research, both reflector antennas are assumed

to be Perfect Electric Conductor (PEC) materials. The PO approximation assumes that

the scattered field, radiated by an induced current density from an incident field (from the

3



feed or other antenna), is equal to the incident field [2] [16] [17]. This approximation takes

advantage of image theory under the assumptions that the perfectly conducting structures

are locally planar and infinite in extent. Each reflector explored in this research satisfies

these assumptions because they are electrically large [2].

It is important to note that in comparison to other methods for Far-Field (FF) analysis

of electrically large radiating structures, such as Method of Moments (MoM) and the Finite

Element Method (FEM), the use of optical approximations, surface equivalence theorems,

and the PO approximation simplify the analysis and reduce the computational complexity

of the radiating structures. The application of each method uses the e+ jωt time convention

for phasor domain quantities. These methods are valid based on the assumptions previously

stated. If any one of the assumptions is not met, other more computationally intensive

methods must be utilized for FF analysis. In order to perform the more computationally

intensive methods, an antenna is typically sampled ten times per wavelength to yield accurate

results [18]. This sampling is computationally infeasible for the reflector antennas explored

in this thesis because of the large number of samples that result.

Finally, surface equivalence theorems simplify the analysis of the reflector surfaces and

the aperture feeding structure concept for the sparse reflector described later. Specifically,

Love’s Equivalence Principle is important for simulating the cross-shaped aperture feeding

structure for the sparse reflector [2] [16] [19]. The only limitation is that Love’s Equivalence

Principle constrains the regions where the field calculations are valid. Care must be taken to

ensure that the fields calculated using Love’s Equivalence Principle are valid.

1.3 Approach and Methodology

Both reflector antennas in this thesis pose a technical challenge that can be analyzed

using conventional methods with careful considerations given to the assumptions required by

each method. The aim of this research is to use multiple methods to obtain an overall system

design of each reflector antenna. The approach taken for the design and analysis of each
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of the two reflector antennas in this thesis is similar except special procedures that apply

to the intended usage for each reflector. In particular, the spherical reflector includes a sky

study to determine additional constraints on its geometry and the sparse reflector includes

the design and analysis of a 50 meter diameter circular shaped, parabollically contoured

baseline reflector antenna system for comparisons of the results. However, the other design

procedures are similar for both reflector antennas and include:

1. Geometrical analysis

2. Plane wave analysis

3. Feed antenna system design

4. Feed antenna analysis

Each method is valid for the design of a specific reflector antenna system. However,

the methods produce results with differing accuracies and some methods produce unique

results that are needed in the final design analysis. The application of the procedures in the

order shown here is based on which procedures require results from other procedures. For

instance, the feed design step requires input from the results of the plane wave analysis.

Also, the order is based on which methods produce more accurate results, where the latter

methods are more accurate than the former methods. Results of each procedure will be

unique according to the reflector antenna system.

1.4 Materials & Equipment

The AFIT Low Observables Radar Electromagnetics network (LOREnet) laboratory

was utilized for the research in this thesis. This laboratory is an independent network

of high powered computers with several current Computational Electromagnetics (CEM)

software packages installed for student research. Due to the sensitive nature of topics

discussed and software utilized, access to LOREnet is restricted. However, the research,

simulations, document composition, and communications needed to complete this thesis

were all approved.
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For completion of the sky study for the spherical reflector, Systems Tool Kit (STK)

software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped

aperture feeding structure simulations, MATLAB® is used. Finally, the simulations of

the sparse reflector and the baseline antenna are all completed using SatCom™ software.

SatCom™ is a CEM software package that incorporates the use of the MoM, the Geometrical

Theory of Diffraction, and the Physical Theory of Diffraction to analyze antenna structures.

SatCom™ is provided by The Ohio State University (OSU) under a specific agreement

stating that the software be used strictly for academic research, and is only installed on

workstations within the LOREnet laboratory.

1.5 Scope

The shaping of the spherical reflector is accomplished in this thesis by analyzing the

reflector using geometrical analysis, ray-tracing, and plane wave analysis performed from

optical diffraction methods. In addition, a sky study is performed for the spherical reflector

to analyze the imposed steering limitations from the plane wave analysis. The sky study

concludes the analysis of the spherical reflector. The design of a feeding structure for the

spherical reflector is not addressed in this thesis.

The shaping for the sparse reflector has already been determined, but geometrical

analysis is performed in order to define the sparse reflector for computer simulations.

In addition, ray-tracing is performed as a proof of concept, and plane wave analysis is

performed to obtain the FF radiation pattern for the sparse reflector. The results from

these analyses are then compared to a 50 meter diameter circular shaped, parabolically

contoured reflector stated previously as the baseline system. The baseline system calculation

is completed using SatCom™ and includes the design of a horn antenna feed structure used in

the analysis. Finally, a cross-shaped aperture antenna is proposed and explored as a possible

optimal feeding structure for the sparse reflector. The analysis of this antenna is performed

using a Finite-Difference (FD) approach to Eigenmode analysis to determine the modes
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supported within this structure. The FF radiation patterns of the cross-shaped aperture

are computed numerically from the dominate Transverse Magnetic (TM) and Transverse

Electric (TE) modes respectively. These patterns are used to determine the suitability of

using a cross-shaped aperture antenna as a feeding structure for the sparse reflector.

The physical implementation and experimental testing of these reflector antennas will

not be performed. Also, the designs will not contain specific parts, manufacturers, or detailed

mechanical drawings for implementing either antenna systems.

1.6 Overview

This thesis is organized as follows: Chapter 2 is a literature review of the published

methods employed in this research; Chapter 3 presents the approach taken and the

applications of the procedures from the literature review; Chapter 4 presents the results and

analysis from the methodology; and Chapter 5 contains a summary, the conclusions from the

analysis, and an explanation of future work. Chapter 2 is organized by analysis method as:

GO, Vector Potential Solutions to Maxwell’s Equations in the FF, The PO Approximation

and Equivalence Theorems, 2-Dimensional Transverse Field Set Relationships, Reciprocity

of Antenna FF Radiation Patterns, and an Overview of the MoM with the derivation of an

Integral Equation. Chapters 3 - 5 are each organized similarly in the following manner: the

geometrical analysis of each reflector antenna, the ray-tracing procedure applied to each

reflector, the plane wave analysis applied to each reflector, the sky study for the spherical

reflector, the baseline antenna design for the sparse reflector, and the feed design for the

sparse reflector.
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II. Background & Literature Review

This chapter presents theoretical concepts involved in the design of electrically large

reflector antennas. Specifically, Geometric Optics (GO) (Section 2.1), solutions to Maxwell’s

equations in the Far-Field (FF) using vector potentials (Section 2.2), Equivalence principles

using image theory, and the physical optics (PO) approximation (Section 2.3) will be

developed [1] [2] [20] [21]. Solutions to Maxwell’s equations for antenna designs often

are not closed-form analytical solutions. Therefore, this chapter also describes the Method

of Moments (MoM) for modeling and simulation of the antenna designs. The research

presented in this chapter reviews the theory needed to design an electrically large reflector

antenna system that provides the desirable directivity and efficiency for remote sensing and

communications. Many publications written in the 1950s and 1960s focused on the design

of reflector antenna systems [1] [7] [20]. The methods in these publications, along with

methods in a collection of works from the 1990s and 2000s, are the basis for the theoretical

concepts of this research [2] [21].

2.1 Geometric Optics (GO)

A simple preliminary step in the design of electrically large reflector antennas is to

analyze the reflector geometry using ray optics which is used interchangeably with GO.

Although this method is not relatively accurate, it is a fast method that can give insight

into how a reflector will perform. GO assumes that the electric and magnetic fields can be

divided into discrete rays which can then be propagated through a reflector system [1]. Also,

GO assumes that the waves propagate through and around objects that are much greater in

size than a wavelength [1]. Finally, GO assumes that all reflections at an interface follow

Snell’s law of Reflection [1]. If the surface of a reflector is a perfectly conducting surface,

all incident energy will be reflected.
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GO is developed in this section using a spherically contoured reflector example. The

use of GO in the methodology will show the ray-tracing method applied to both a spherically

contoured reflector and a parabolically contoured reflector. Also, note that the overbar

notation used in this development signfies a line segment between two points.

An electrically large spherical reflector can be analyzed using GO. Figure 2.1 shows

the cross-sectional geometry for a general spherical reflector under consideration.

Figure 2.1: Spherical reflector geometry

The radius of curvature is denoted by R and is set equal to 1 for simplicity. The focus

is labeled as C and its distance from the center of the reflector is f , where f is equal to half

the radius of curvature. The distance f constitutes the paraxial focus where the z-axis is

considered the paraxial [1]. For this analysis, a ray entering at point A is incident on the

reflector at point B. A is a distance h = sinψ from the z-axis. The ray is then reflected at B

towards the paraxial. Snell’s law of reflection states that the angle of incidence at a point

measured with respect to the surface normal at that point is equal to the angle of reflection
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measured opposite the angle of incidence. This is shown in Figure 2.1 where the angle of

incidence is denoted by ψ and is equal to the angle of reflection. These angles are measured

with respect to the surface normal at B shown as a dashed line. This ray then passes through

a point C1 on the paraxial some distance ∆C from the paraxial focus. The relationship of

the angle ψ and the line segments BC1 and OC1 is determined by using the properties of the

isoceles triangle (∆OC1B) [1]

BC1 = OC1 =
1
2

secψ. (2.1)

As seen in Figure 2.1, there is a deviation, ∆C , from C for larger angles. This distance

can be calculated as:

∆C = CC1 =
1
2

(secψ − 1) . (2.2)

∆C is known as the longitudinal spherical aberration, or focusing imperfection along the

paraxial [1].

Further development of Figure 2.1 involves analyzing a tight bundle of rays that are

incident on the reflector. This geometry is depicted in Figure 2.2. All parameters of the

reflector are the same as shown in Figure 2.1 with the added illustration of a curve extending

from C which is later described as a caustic surface.

The focusing of rays (energy) to multiple foci, or astigmatism, for this reflector is

described using two steps. First, the tangential focal length, or the distance from a point B

on the reflector to the point P tangent on the caustic surface, is calculated in Equation (2.3)

with the approximations dh/ ft = d(2ψ) and dh/dψ = cosψ [1]. Each of these differential

distances is shown in Figure 2.2

ft = BP = f cosψ. (2.3)
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Figure 2.2: Spherical reflector geometry; Analyzing inherent aberrations

Then, the sagittal focal length, or the distance between point B and C1, is calculated in

Equation (2.4) [1]

fs = BC1 = f secψ. (2.4)

The Astigmatism is then calculated as the difference between the sagittal and the tangential

focal length [1]

PC1 = fs − ft. (2.5)

Finally, Figure 2.3 shows how the use of GO on a spherical reflector will result in a

caustic surface. The caustic surface is a contour that is traced by the rays as they travel from

the reflector towards the paraxial. Caustic surfaces occur frequently in optics problems and

can be classified according to their shape. In the case of this spherical reflector, the caustic

surface is a nephroid (kidney bean shape), which comes from the epicycloid classification

of caustic surfaces [1].
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Figure 2.3: Caustic by ray tracing [1]

2.2 Solutions to Maxwell’s Equations in the Far-Field (FF) Using Vector Potentials

Geometric Optics (GO) provides a more qualitative view of how energy is focused from

a reflector. To obtain a more quantitative view of a reflector antenna in the Far-Field (FF),

Maxwell’s equations must be solved or approximated numerically. The FF region is a

generalized term used to describe being far enough away from a radiating structure relative

to the operating wavelength, λ, and the largest dimension of the radiating structure, D.

Solving Maxwell’s equations in the FF allows several simplifications to happen which will

be shown later. There are many forms of Maxwell’s equations and many approaches to

solving them. The particular form of Maxwell’s equations used in this development is

given in Equations (2.6) - (2.9) [2] [21] [16]. This form of Maxwell’s equations is the time
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harmonic phasor representation that assumes a linear, homogeneous, and isotropic medium.

Each quantity is shown as dependent on frequency, indicating that it may be dispersive. The

equations are given as:

∇ × E(r, ω) = −z(ω)H(r, ω) −M(r, ω) (2.6)

∇ ×H(r, ω) = y(ω)E(r, ω) + J(r, ω) (2.7)

∇ · D(r, ω) = qe(r, ω) (2.8)

∇ · B(r, ω) = qm(r, ω) (2.9)

where

z(ω) = σm(ω) + jωµ(ω)

y(ω) = σe(ω) + jωε(ω).

In Equations (2.6) - (2.9),

r = (x, y, z),

E and H are the electric and magnetic fields,

J andM are the electric and magnetic current densities (sources),

qe(r, ω) and qm(r, ω) are the electric and magnetic charge densities,

B and D are the electric and magnetic displacement fields,

z and y are the intrinsic impedance and admittance of the media,

σe(ω) and σm(ω) are the electric and magnetic conductivities.

Again, each quantity is shown as dependent on angular frequency, ω = 2π f , indicating

that the medium may be dispersive.
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The approach to solving these equations in this development involves the use of

auxiliary functions known as vector potentials. Specifically, the resulting integrals from using

the auxiliary functions will be manipulated to obtain concise mathematical representations

that are well suited to the geometry of the antenna system. Electric sources only will be

considered. However, the use of magnetic sources is the dual of the development that follows

and will yield similar results based on the duality theorem [16]. Also, a deviation to the use

of spherical coordinates will be shown for the integrations for spherically shaped sources

such as the spherical reflector [21]. However, the use of Cartesian coordinates can be used

by not performing the dyadic transforms shown later.

The first step in this approach to solving Equations (2.6) - (2.9) is to setM = 0 and

qm = 0, which means that the fictitious magnetic sources have been turned off for this

development. The next step is to multiply Equation (2.6) by µ. Here the dependencies on r

and ω are implied for shorthand notation [2] [21]

− ∇ × µE = µzH = zB (2.10)

where

B = µH by Equation (2.9).

Now, letting B , ∇ × A, the ∇ · B = 0 because a purely circulating field has no divergence

or ∇ · (∇ × A) = 0,∀A. Equation (2.10) can be written as [2] [21]

− ∇ × µE = z∇ × A = ∇ × zA. (2.11)

In Equation (2.11), bringing the intrinsic impedance, z, through the curl operator is valid

because it has no spatial dependence. Rearranging Equation (2.11), it can be written as

∇ × (µE + zA) = 0. (2.12)
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Making the substitution that −∇Φ = µE + zA, which implies that ∇ × (−∇Φ) = 0,

Equation (2.12) can be rearranged into

−∇Φ = µE + zA

⇒ µE = −zA − ∇Φ

(2.13)

Leaving this portion of the development temporarily, the next step is to multiply

Equation (2.7) by µ [2] [21]

µ∇ ×H = ∇ × B = yµE + µJ. (2.14)

Recalling that B , ∇A, taking the curl of B yields:

∇ × B = ∇ × ∇ × A = ∇∇ · A − ∇2A (2.15)

Equating Equations (2.13) - (2.14) with Equation (2.15), the result then becomes

∇∇ · A − ∇2A = −zyA − y∇Φ + µJ. (2.16)

Equation (2.16) can be written as

∇(∇ · A + yΦ) =
[
∇2 − γ2

]
A + µJ (2.17)

where γ2 = zy [2] [21].

Finally, letting −yΦ = ∇ · A, known as the Lorentz Condition, the result may be

obtained where by Equation (2.10), the magnetic vector potential, A, can be obtained from

a specified current density J as in Equation (2.18) [2]

[
∇2 − γ2

]
A = −µJ. (2.18)
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Further development is based on knowing a current density that resides on the surface of

the antenna. The process for determining this will be discussed later in Section 2.3. However,

for this development, the current density is expressed generally as a vector function using

Cartesian vector components

JR(r′, ω) = x̂Jx + ŷJy + ẑJz. (2.19)

Once the current density is specified in this form, it can be integrated over the surface

of the reflector (denoted by the primed variables) for every observation point in the FF

(denoted by the unprimed variables)

J R (θ, φ, ω) =

∫
x′

∫
y′

∫
z′

JR(r′, ω)eγ(ω)x′ x̂·r̂(θ,φ)eγ(ω)y′ŷ·r̂(θ,φ)eγ(ω)z′ ẑ·r̂(θ,φ)dx′dy′dz′ (2.20)

J R(θ, φ, ω) =

∫
|r′ |

JR(r′, ω)eγ(ω)r′·r̂(θ,φ)dr′.

In Equation (2.20), r̂(θ, φ) = x̂ sin θ cos φ+ ŷ sin θ sin φ+ ẑ cos θ and also, the volume integral

accounts for the skin depth of the current density that resides on the surface of the antenna.

The magnetic vector potential A is then obtained by evaluating

AR(rS , ω) = µ(ω)ψ(r, ω)J R(θ, φ, ω) (2.21)

where ψ is the Free Space Green’s Function (FSGF) given by:

ψ(r, ω) =
e−γ(ω)r

4πr
. (2.22)

The derivation of the FSGF is omitted in this thesis for brevity. Using the parallel ray

approximation to simplify a solution to the time harmonic non-homogeneous vector wave
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equation in Equation (2.18) can be done using the FSGF. The assumption that any vector

from the surface of the antenna to some FF observation point is parallel to the corresponding

vector measured from the source origin, to the observation point is known as the parallel ray

approximation (see Figure 2.4) [2] [21]. It is important that the source origin is typically the

same as the FF origin and can be chosen to simplify the analysis of a given antenna.

Note this solution for the vector potential assumes the removal of any object in

space other than the source itself (i.e. only one continuous medium between the source

and observer). The vector potential is a mathematical quantity that is used as an

intermediate step to obtain the electric and magnetic FF patterns. It is a vector function that

represents a directional pattern which varies over an imaginary sphere enclosing the antenna.

Consequently, the electric and magnetic FF patterns vary in the same manner. Therefore,

the vector potential is converted from rectangular unit vectors to spherical unit vectors of

the FF. This conversion highlights the FF dependency on (θ, φ).

Figure 2.4: Illustration of the Parallel Ray Approximation
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Figure 2.5: Spherical coordinate system

The conversion is performed using the dyadic transform

T
R
S =


sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

 . (2.23)

The spherical coordinate system utilized here has the following conventions:

r̂ is the unit vector oriented radially outward from the origin,

θ̂ is the unit vector oriented along the angle measured downward from the positive

z-axis,

φ̂ is the unit vector oriented along the angle measured counter-clockwise from the

positive x-axis (see Figure 2.5).
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The dot product of this dyadic with the vector potential produces the vector potential in

spherical vector components:

AS (rs, ω) = T
R
S · AR(rS , ω). (2.24)

Then the electric FF is calculated as:

ES (rS , ω) = −
z(ω)
y(ω)

[AS (rS , ω) − r̂Ar] . (2.25)

The radial component is omitted from the expression, denoted by the subtraction in

Equation (2.25), at this point because the radial component of the electric FF is negligible

due to the radiation condition [16].

Finally, from Equation (2.6), the magnetic FF is calculated as:

HS (rS , ω) =
1

η(ω)
r̂ × ES (rS , ω), (2.26)

where η(ω) is the impedance of free space and is defined as:

η(ω) =

√
z(ω)
y(ω)

. (2.27)

2.3 The Physical Optics (PO) Approximation and Equivalence Theorems

In the analysis of antennas, it is often convenient to use equivalence theorems to

approximate the current density on the surface of the antenna. Equivalence theorems are

focused on reducing a given geometry to a theoretical current radiating into free-space that

sustains the same fields as the original source [2] [16] [22]. This theoretical current can be

used in the radiation integral shown in Equation (2.20) to then calculate the vector potential

and consequently the Electric and Magnetic FF radiation patterns. In the context of this
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thesis, the surface equivalence theorem will be used and thus is described here along with

the PO approximation.

2.3.1 The PO Approximation.

Electrically large structures, or structures that are much greater in size than a

wavelength, pose a computational burden in numerical approximations of electromagnetic

problems. In particular, if an electrically large structure such as a reflector antenna is a good

conductor, the PO approximation may be used to solve for the current density on the surface.

In general, a scattering problem has an expression such as:

Jp = n̂ ×H = n̂ × (H1 + Hs) , (2.28)

which describes the current density on the surface of scattering body. If this surface, however,

is approximately flat and appears infinite in extent within a local region (i.e. electrically

large), Equation (2.28) can be rewritten as:

Jp = 2n̂ ×H1. (2.29)

This is known as the PO approximation [16] [17]. It is valid based on how flat the structure

is locally compared to a wavelength. Along the surface of the conductor, the scattered field

component denoted by the superscripted s in Equation (2.28) is equal in amplitude and in

phase with the incident field component denoted by the subscripted 1 in Equation (2.28).

2.3.2 Surface Equivalence Theorem and Image Theory.

The surface equivalence theorem starts with unknown current sources J and M

sustaining known fields E and H. To obtain equivalent sources in terms of the known

fields E and H, an imaginary surface can be carefully chosen to enclose the unknown

sources J and M. The goal is then to determine the radiated fields outside of the surface.

Therefore, it is critical to choose a surface such that the fields over the surface are known a
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priori. Most often, the surface chosen corresponds closely to conducting parts of the antenna

structure.

The equivalent sources can then be defined over the surface as:

Js = n̂ × (H −H1) (2.30)

Ms = −n̂ × (E − E1) . (2.31)

The subscript s here denotes that the current is over the imaginary surface. The subscript

1 on the additional fields shown in Equations (2.30) - (2.31) indicate that the fields are those

within the volume enclosed by the imaginary surface.

These equivalent surface currents radiate out into unbounded space, where it is assumed

the medium is the same everywhere, and sustain the unknown fields E and H outside of the

surface. Because everywhere outside of the imaginary surface is the region of interest for

field calculations, it is a valid approximation to assume that the fields within the imaginary

surface are zero. This reduces Equations (2.30) - (2.31) to:

Js = n̂ ×H1 (2.32)

Ms = −n̂ × E1. (2.33)

Equations (2.32) - (2.33) are known as Love’s Equivalence Principle [16] [19]. To

validate the approximation made by the Love’s Equivalence Principle, the surface will be

replaced with either a Perfect Electric Conductor (PEC) or Perfect Magnetic Conductor

(PMC) surface, based on the fields that reside on the surface. Having done this, image theory

is required to obtain an equivalent current density radiating in unbounded space. Image

theory is best described by studying Figure 2.6, where linear elements are imaged across a

PEC and a PMC plane respectively. In order for image theory to be used, it must be assumed
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that the PEC or PMC is on the order of several wavelengths, or electrically large. This

assumption is approximating the original stipulation that image theory applies to a current

radiating in the presence of an infinite PEC or PMC [2] [16].

Using the cases of either a tangential electric current in the presence of a PMC surface

or a tangential magnetic current in the presence of a PEC surface, image theory is applied.

This yields a single equivalent current source above a perfect conductor with twice the

strength of the original source radiating into unbounded space. The imaginary surface

is removed by Love’s Equivalence Principle and image theory where the final equivalent

current sources can be written more concisely as:

Js = 2n̂ ×H1 (2.34)

Ms = −2n̂ × E1. (2.35)

Figure 2.7 shows an illustration of applying Love’s Equivalence Principle to a

rectangular aperture surrounded by an infinite ground plane. The left hand picture shows the

original problem with the two media, the known field components over the aperture, and the

coordinate system convention. The right hand diagram shows the equivalent problem with

the ground plane removed leaving only the equivalent sources radiating into free space. It

is important to note that this particular application of Love’s Equivalence Principle yields

radiated field results that are valid only for z > 0 based on the original problem.

2.4 Two-Dimensional Transverse Magnetic (TM)z and Transverse Electric (TE)z

Field Set Relations

In the previous section, a method for devising a problem that is equivalent to an

aperture with known field components radiating in free space was developed. However,

the method referred to relies on knowing the field components within a given aperture.
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Figure 2.6: Illustration of Image Theory applied to linear elements above perfect conductors
[2]

Figure 2.7: Illustration of a particular application of Love’s Equivalence Principle to a
rectangular aperture set in an infinite ground plane

Solving for the fields within an aperture is analogous to solving for the fields within the

cross-section of a waveguide. Obtaining these field components can be accomplished using
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a Finite-Difference (FD) approach to solving Maxwell’s equations within a given aperture

or waveguide cross-section.

Before being able to apply a FD approximation (shown later) to solving for the field

components within a given aperture, Maxwell’s equations must be simplified. Equations (2.6)

and (2.7) shown previously are the form of Maxwell’s equations that will be used. This form

of Maxwell’s equations, as stated previously, is the time harmonic phasor representation,

which assume a linear, homogeneous, isotropic medium that may or may not be dispersive.

Equations (2.6) and (2.7) are rewritten here for convenience

∇ × E(r, ω) = −z(ω)H(r, ω) −M(r, ω)

∇ ×H(r, ω) = y(ω)E(r, ω) + J(r, ω).

In the previous development based on these two equations, a vector potential approach

was used to simplify the mathematics. However, for this development, the fields will be

approximated directly and several assumptions are made to further simplify the problem.

First, the aperture is assumed to be source-free, meaning that the aperture is far enough away

from the generating source allowing the sources to be neglected in the calculations. Second,

ignoring loss in the aperture, the intrinsic parameters, z(ω) and y(ω), are equal to jωµ(ω)

and jωε(ω) respectively. Third, the problem is reduced from a 3-Dimensional problem to a

2-Dimensional problem because it is assumed, from the analogy of a waveguide problem,

that the field components amplitude distributions within the aperture do not vary in the

direction of propagation (i.e. propagation down a waveguide). Finally, it is assumed that

there is no dispersion across the aperture, eliminating the dependency on frequency for the

material parameters.
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Given these assumptions, Equations (2.6) and (2.7) can be written as:

∇ × E(r) = − jωµH(r) (2.36)

∇ ×H(r) = jωεE(r). (2.37)

To uncouple Equations (2.36) and (2.37) and arrange them in a more easily solved form, the

curl of both sides of both equations is taken first

∇ × ∇ × E(r) = − jωµ∇ ×H(r) (2.38)

∇ × ∇ ×H(r) = jωε∇ × E(r). (2.39)

From Equations (2.36) - (2.37), Equations (2.38) and (2.39) can be written as:

∇ × ∇ × E(r) = − jωµ ( jωεE(r)) = ω2µεE(r) = k2E(r) (2.40)

∇ × ∇ ×H(r) = jωε (− jωµH(r)) = ω2µεH(r) = k2H(r), (2.41)

where k is referred to as the wave number and is expressed as k2 = ω2µε.

To further simplify these expressions, the left hand sides of Equations (2.40) and (2.41)

can be rewritten as:

∇ × ∇ × E(r) = ∇ (∇ · E(r)) − ∇2E(r) (2.42)

∇ × ∇ ×H(r) = ∇ (∇ ·H(r)) − ∇2H(r). (2.43)

It is important to note that under the assumption of a source-free aperture, ∇ · E(r) = 0 and

∇ ·H(r) = 0 based on Equations (2.8) and (2.9):

∇ · E(r) =
qev(r)
ε

=
−∇ · J(r)

jωε
= 0 (2.44)
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∇ ·H(r) =
qmv(r)
µ

=
−∇ ·M(r)

jωµ
= 0. (2.45)

Combining Equations (2.40) - (2.43), and the simplifications made in Equations (2.44) - (2.45),

the resulting equations to be solved become:

∇2E(r) + k2E(r) = 0 (2.46)

∇2H(r) + k2H(r) = 0. (2.47)

Equations (2.46) and (2.47) are still 3-Dimensional, but as stated earlier, this particular

problem can be reduced to a 2-Dimensional problem. In particular, Equations (2.46) and

(2.47) can be rewritten in scalar form with only the longitudinal (assumed to be the z-

direction) components of the fields:

(
∇2 + k2

t

)
Ez = 0 (2.48)

(
∇2 + k2

t

)
Hz = 0. (2.49)

Equation (2.48) can be referred to as the TMz field set because the magnetic field resulting

from solving this system will have no z-component. Similarly, Equation (2.49) can be

referred to as the TEz field set because the electric field resulting from solving this system

will have no z-component. Note that the usage of the subscripted t indicates transverse

direction, which in this case means x- and y-directions. In particular, k2
t = k2

x + k2
y where kx

and ky are the x and y components of the overall wave number k.

Finally, to obtain a unique solution to either of these field sets, the aperture boundaries

must be taken into account. As an example, which will be used later in this thesis, PEC

boundaries can be used, which result in the following boundary conditions:

TMz Ez|Γ = 0 (2.50)
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TEz ∂Hz

∂n

∣∣∣∣∣
Γ

= 0 (2.51)

where the evaluation at Γ means evaluation at the boundary. In Equation (2.51), the partial

derivative with respect to n refers to the partial with respect to the normal direction, meaning

it assumes the normal direction at any boundary.

Further development of these field set relations will be shown in the methodology

section where the numerical approximations made to this problem will be detailed.

2.5 Reciprocity of Antenna FF Radiation Patterns

Reciprocity, as it applies to antenna FF radiation patterns, means that the FF radiation

pattern of a particular antenna will be identical in either transmit or receive mode [2]. This

property is valid under certain conditions, which include the medium of wave propagation

and the materials used in the antenna system must be linear, a single distinct propagating

mode feeds the antenna, and the antenna must be polarization matched to the probe antenna

[2]. The probe antenna refers to an antenna used to either measure the transmitted signal

from the antenna under test or to transmit a signal received by the antenna under test. The

last condition is referring to the experimental determination of an antenna FF radiation

pattern; but in a simulation, this condition will always be true. Much of the work within this

thesis is hinged upon reciprocity to reduce the analysis of a given antenna system to only

one mode (i.e. transmit or receive mode).

2.6 Overview of Method of Moments (MoM)

Discretizing a continuous geometry is the most common numerical approach to an

approximate solution to Maxwell’s equations for a given geometry. Dividing the geometry,

such as the surface of a reflector antenna, into a finite number of discrete elements makes

possible the application of a linear algebra approach to approximating the solutions to

Maxwell’s equations. Before discretizing a geometry, however, analytical manipulations of

Maxwell’s equations must occur to express them in a concise form known as an integral
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equation. Integral equations are named as such because the unknown quantity is inside and

possibly outside of an integral. One method of solving these types of equations involves

using an approach referred to as the Finite Element Method (FEM) [18] [23]. The FEM

discretizes a geometry into small pieces referred to as mesh cells and expands the unknown

quantity into a series sum of basis functions, where the basis functions are chosen by the

user. These approximations to the original integral equation result in a linear system that

can be solved for a series of weights applied to the series sum of basis functions. To obtain

a final solution for the unknown quantity, the weights are applied to the series of basis

functions which are then summed together. It is important to note also that the FEM applies

to electrically large and small geometries, but can result in impractically large linear systems

for electrically large geometries, hence the motivation for Section 2.3.1. The approximations

given in Section 2.3.1 do not require the use of a basis function expansion of the unknown

current density and thereby simplifying the evaluation of the radiation integrals.

The MoM is a special case of the FEM [18]. However, the MoM can just be applied to

surface integral equations and when it is, it can also be referred to as a Boundary Element

Method (BEM). In general, the FEM is applied to volumetric problems dealing with the

differential form of Maxwell’s Equations. Both methods result in a linear system to be

solved using matrix inversion or decomposition [18].

To illustrate how to apply the MoM, an integral equation is developed here. Previously,

to avoid having to apply the MoM, the surface equivalence theorem coupled with

image theory and Love’s Equivalence Principle were applied in conjunction with the PO

approximation in Section 2.3 to compute the surface current density from the known

incident fields. Using the surface equivalence theorem coupled with image theory and

Love’s Equivalence Principle worked well for electrically large structures, but when the

structure under test is not electrically large, the results will not be accurate [2] [17]. This
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inaccuracy motivates the use of the MoM for better accuracy. The development of an integral

equation follows.

This development starts with known incident fields Ei and Hi sustained by impressed

current sources Ji andMi. Maxwell’s equations from Equations (2.6) and (2.7) rewritten for

these quantities with the assumption that the medium is free-space, meaning that z = jωµ0

and y = jωε0, are shown here as:

∇ × Ei = − jωµ0Hi −M
i (2.52)

∇ ×Hi = jωε0Ei + Ji, (2.53)

where the dependency on spatial coordinates (x, y, z) and frequency ω are assumed for the

vector quantities.

The fields Ei and Hi can be assumed to be incident upon a scattering object of interest.

In the case of this thesis, a reflector antenna is of interest. Using the surface equivalence

principle, Equations (2.52) and (2.53) become:

∇ × E = − jωµ0H −Mi (2.54)

∇ ×H = jωε0E + Ji, (2.55)

where E = Ei + Es and H = Hi + Hs respectively. The field quantities Es and Hs are the

scattered fields that are radiated by the equivalent current sources induced on the surface of

the reflector by the incident fields Ei and Hi.

Substituting in E = Ei + Es and H = Hi + Hs into Equations (2.54) and (2.55) and

rearranging for the scattered fields, Maxwell’s equations for the scattered fields become:

∇ × Es = − jωµH + jωµ0H − jωµ0Hs (2.56)
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∇ ×Hs = jωεE − jωε0E + jωε0Es, (2.57)

where µ0, ε0 are the permeability and permittivity of free space and µ, ε are the permeability

and permittivity associated with the reflector.

The scattered fields’ dependence on E and H illustrate that the scattered fields are

maintained by the incident fields. The incident fields induce a current on the surface of the

reflector which maintains the scattered fields. Therefore, Equations (2.56) and (2.57) can be

rewritten as:

∇ × Es = −M
eq
− jωµ0Hs (2.58)

∇ ×Hs = Jeq + jωε0Es, (2.59)

whereMeq and Jeq are the induced currents on the surface of the reflector.

As shown in Section 2.2, it is mathematically simpler to solve for the unknown field

quantity using vector potentials [2]. In the development presented in Section 2.2, the solution

to Maxwell’s equations using only the magnetic vector potential A was presented. The

solution using the electric vector potential F is the dual of that particular development and

therefore is omitted for brevity [2] [16]. However, the final expressions are presented as:

Es =
1

jωε0µ0

[
k2

0As + ∇(∇ · As)
]
−
∇ × Fs

ε0
(2.60)

Hs =
∇ × As

µ0
+

1
jωε0µ0

[
k2

0Fs + ∇(∇ · Fs)
]
, (2.61)

where the vector potentials As and Fs are calculated as:

As(r) =

∫
S
µ0Jeq(r′)G(r|r′)dS ′ (2.62)

Fs(r) =

∫
S
ε0M

eq(r′)G(r|r′)dS ′. (2.63)
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In Equations (2.62) and (2.63), the spatial dependency is noted due to the two different

reference frames associated with this problem. The observation or observer reference

frame is denoted by unprimed variables and the source reference frame is denoted by

primed variables. Both reference frames share the same origin, but are independent of one

another. Also, the G(r|r′) function is the generic representation for the Free Space Green’s

Function (FSGF) originally presented in Section 2.2 as ψ(r, ω), but expressed here as:

G(r|r′) =
e− jkR

4πR
, (2.64)

where R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2. The difference here is that the FF

approximation has not been made, meaning that the FSGF depends on both observer and

source variables, which indicates that it cannot be split or moved outside the integral.

To obtain a unique solution to this problem, the boundary condition in Equation (2.65)

is applied under the assumption that the reflector surface is a good conductor making it

resemble a PEC (i.e. very high conductivity)

n̂ × E(r) = 0 ∀ r ∈ Reflector Surface (2.65)

⇒ n̂ × Es = −n̂ × Ei.

The integral equation for the scattered electric field, known as an Electric Field Integral

Equation (EFIE), can be written as:

n̂ ×
1

jωε0µ0

[
k2

0 + ∇∇·
] ∫

S
µ0Jeq(r′)G(r|r′)dS ′ = −n̂ × Ei. (2.66)

Having developed a particular integral equation in Equation (2.66), the MoM can now

be applied to solve for the unknown current density Jeq(r′). The first step is to choose a

set of basis functions to use as an approximation to the unknown current density. For this
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development, the basis functions will be left in a general form because the choice of basis

functions are problem dependent [18]. Using this approximation for the unknown current

density, the summation can be expanded or truncated to N number of terms. This is shown

in Equation (2.67)

Jeq(r′) ≈
N∑

n=1

an fn(r′). (2.67)

Substituting Equation (2.67) into Equation (2.66) and exchanging the order of integration

and summation, Equation (2.66) becomes:

n̂ ×
1

jωε0µ0

[
k2

0 + ∇∇·
]
µ0

N∑
n=1

an

∫
S

fn(r′)G(r|r′)dS ′ = −n̂ × Ei. (2.68)

This step now has created N unknowns to solve for, an...n = 1, 2, ...,N, and only one

equation. In order to create the other equations to solve for the coefficients, an, a testing

operation is presented. The choice of testing function is important to the problem type,

but the most common testing function, the delta function, is presented here [18] [23]. The

procedure of applying a testing operation at N points is the same as enforcing boundary

conditions on the surface of the reflector:

n̂×
1

jωε0µ0

[
k2

0 + ∇∇·
]
µ0

∫
S m

 N∑
n=1

an

∫
S n

fn(r′)G(r|r′)dS ′
 δ(r′−r′m)dS ′ = −n̂×

∫
S

Ei(r′)δ(r′−r′m)dS ′,

(2.69)

which can be further simplified to:

n̂ ×
1

jωε0µ0

[
k2

0 + ∇∇·
]
µ0

N∑
n=1

an

∫
S n

fn(r′)G(r|r′m − r′)dS ′ = −n̂ × Ei(r′m). (2.70)
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The expression shown in Equation (2.70) can be reformulated into a linear system

Ax = b where:
Amn = µ0 fn(r′)G(r|r′m − r′)

xn = an

bn = Ei
u(r′m).

(2.71)

It is important to note the subscript u on the known incident field indicates only one of the

individual vector components of the current density. For the other dimensions, the same set

of equations is used with the other vector components of the incident electric field.

The solution for the coefficients, an, follow from solving the linear system in

Equation (2.71), which can then be used to approximate the current density on the surface

of the reflector. The approximate current density can then be used to solve for the scattered

fields everywhere surrounding the reflector and other antenna parameters such as the

directivity, gain, beam widths, and front to back ratio.

The MoM will be used in this thesis by the commercial Computational Electromagnetics

(CEM) codes. The general presentation of MoM here shows the basis of the commercial

CEM codes, but each will apply different proprietary methods for solving the systems more

efficiently.
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III. Methodology

For this thesis, there are two particular reflector antenna designs of interest. The first is

a rectangular shaped, spherically contoured reflector (spherical reflector) and the second

is a cross-shaped, parabolically contoured reflector (sparse reflector). These reflectors are

electrically large because the largest dimensions of each are on the order of hundreds

to thousands of wavelengths. In addition, each reflector has a custom-shape. Each

poses a technical challenge that can be analyzed using conventional methods with careful

considerations given to the assumptions required by each method. The aim of this research

is to use multiple methods to obtain an overall system design of each reflector antenna.

A presentation of the approach and methods that are used to generate the field data and

corresponding results is given in this chapter. The approach taken for the design and analysis

of each of the two reflector antennas in this thesis is similar except for special procedures

that apply to the intended usage for each reflector. In particular, the spherical reflector

includes a sky study to determine additional constraints on its geometry and the sparse

reflector includes the design and analysis of a baseline antenna system for comparisons of

the results. However, the other design procedures are similar for both reflector antennas and

include:

1. Geometrical analysis, which includes determining the dimensions of each reflector

and ray-tracing as a qualitative experiment to ensure the reflectors will perform as

expected.

2. Plane wave analysis, which involves analyzing each reflector in its receiving mode

with a plane wave incident on the surface. The results from this procedure are

numerical results which include the directivity, the Far-Field (FF) radiation pattern

(amplitude and phase), the beam width(s) (First Null Beam Width (FNBW) or Half
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Power Beam Width (HPBW)), and the front to back ratio of the sparse reflector. This

procedure will also produce results that give insight into designing a feeding structure

for each reflector.

3. Feed antenna system design based on the Plane Wave Analysis results. This procedure

is different for each reflector due to the differences in the Plane Wave Analysis results.

Designing a feeding antenna system is not an exact procedure because it involves

intuition to devise possible feed antenna systems. This intuitive insight is the creative

aspect of antenna design which is a skill acquired only after gaining a thorough

knowledge of Electromagnetics.

4. Feed antenna analysis to obtain the FF radiation pattern of the feeding antenna as the

incident pattern on the reflector antenna. This procedure is performed only for the

sparse reflector.

Many of the processes and procedures used in this chapter are presented generally

in Chapter 2. Each method is valid for the design of a specific reflector antenna system.

However, the methods produce results with differing accuracies and some methods produce

unique results that are needed in the final design analysis. Applying the procedures in the

order shown here is based on which procedures require results from other procedures. For

instance, the feed design step requires input from the results of the plane wave analysis.

Also, the order is based on increasing accuracy of results where the latter methods are more

accurate than the former methods. Results of each procedure are unique according to the

reflector antenna system.

3.1 Geometrical Analysis

This section presents the geometrical analysis of each reflector antenna. These reflectors

are each a new concept in reflector antenna systems with several dimensional degrees of

freedom. However, many dimensions of the reflector antennas have been provided by the
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sponsoring group. These dimensions are used as design constraints to further analyze the

dimensions that must be determined.

3.1.1 Rectangular Shaped, Spherically Contoured Reflector Geometry.

An illustration of the rectangular, spherically contoured reflector (spherical reflector)

is shown in Figure 3.1. The length and width of the rectangular shape are the constrained

dimensions. However, the radius of curvature for the reflector was not specified and thus

constitutes a degree of freedom in the design procedure. In order to apply the ray-tracing

procedure for this reflector, the relationship between the given dimensions and the variable

dimension is first determined.

Figure 3.1: Geometry illustration for the spherical reflector

Given that the dimensions shown in Figure 3.1 are analogous to the chord length of a

circle illustrated in Figure 3.2, the formula for the length of a chord is used and is given as:

Chord Length = l = r crdθ = 2r sin
θ

2
, (3.1)

where the radius of curvature r and the angle θ are both unknowns and the chord length

corresponds to either of the dimensions given in Figure 3.1. To use Equation (3.1), one of

the two unknown quantities needs to be specified. Given that the radius of curvature, r, is a
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degree of freedom, it is used as the specified variable while allowing θ to vary according to

r. Therefore, rearranging Equation (3.1) for θ gives the expression:

θ = sin−1
(

l
2r

)
. (3.2)

Figure 3.2: A chord of a circle

Equation (3.2) is then used in the geometry discretization for the spherical reflector

to perform ray-tracing. The ray-tracing procedure is described in Section 3.1.2 and the

corresponding results are presented in Section 4.1.1. Also, the surface area calculations and

the comparison of dimensions to wavelengths are presented in Section 4.1.

3.1.2 Ray-Tracing Procedure: Rectangular Shaped, Spherically Contoured Re-

flector.

The ray-tracing procedure is a simple method for determining the qualitative

performance of a reflector system. It is a method that is based on the same assumptions as

Geometric Optics (GO) in that all incident waves are treated like discrete rays that travel

in a straight path until they encounter a boundary between surfaces. Transmission through

boundaries between surfaces take into account the refractive index difference between the
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two media causing a bending of the path the energy follows. However, it is assumed that

the surface of the spherical reflector is a Perfect Electric Conductor (PEC), meaning that

all incident energy is reflected. Reflections are then handled using Snell’s law as described

in Section 2.1 which states that the angle of incidence upon a surface measured from the

surface normal at that point is equal and opposite to the angle of reflection measured also

from the surface normal at the point of incidence.

The ray-tracing procedure is implemented for the spherical reflector using MATLAB®.

The user inputs to the code include the width and height of the rectangular shaped reflector,

the radius of curvature, and the number of incident rays to simulate for each 2-Dimensional

cross-section. From these inputs, the code generates three figures: the geometry as shown

in Figure 3.1, a 2-Dimensional cross-section of the spherical reflector with incident and

reflected rays, and a 3-Dimensional rendition of the spherical reflector with incident and

reflected rays. The surf( ) command is used to plot the reflector from a meshed grid based

on the user inputs. The quiver( ) and quiver3( ) functions are used to plot each ray

for the 2-Dimensional and 3-Dimensional cases respectively. The inputs to each function

include the beginning point of each ray and the vector components of each ray.

Calculating the surface normals involves using the spherical to Cartesian coordinates

transform equations given as:

X = R sin θ cos φ

Y = R sin θ sin φ

Z = R cos θ,

(3.3)

where R is the radius of curvature, θ is the angle measured with respect to the z-axis, and φ

is the angle measured in the xy-plane counter-clockwise from the x-axis. The coordinate

convention is shown in Figure 2.5 where the origin is considered as the center point for the

radius of curvature of the spherical reflector (see Figure 3.5). Calculating the reflected rays

is performed by projecting the incident rays onto their corresponding surface normal and
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subtracting twice the projection from the incident vector. This vector method of Snell’s law

avoids the use of programming loops, but the reflected rays are plotted using a programming

loop. The resulting plots from this method are shown in Section 4.1.1 with the discussion.

Also, the code for performing the ray-tracing is given in Section A.1

3.1.3 Cross-shaped, Parabolically Contoured Reflector Geometry.

The cross-shaped, parabolically contoured reflector (sparse reflector) concept was

proposed as a folding antenna concept for a more deployable high directivity antenna system.

The geometry was developed as a structurally feasible concept, but with unknown electrical

performance. To analyze the electrical performance of this reflector, again the geometrical

analysis is the first step.

Figure 3.3 shows the conceptual drawing of the sparse reflector. The dimensions are

not variable, thereby reducing the number of design iterations in the early phases of analysis.

The only dimension not shown in Figure 3.3 is the focal length, which was specified as

f = 80m. Unlike the spherical reflector, the sparse reflector focuses incident energy to a

single point referred to as the focal point because of the parabolic contour. There are no

inherent aberrations, meaning that all energy received at the focal point will be in phase

causing little to no signal strength loss on receive.

The illustration in Figure 3.3 shows only a cross-sectional view of the cross-shape

formed by this reflector. A side-looking view shown in Figure 3.4 illustrates the parabolic

contour that the sparse reflector has. The sparse reflector is a cross-shaped cutout from a

paraboloid with a focal distance of 80m, resulting in a shallow curved shape.

Given all the dimensions for the sparse reflector, the parabolic contour associated with

this reflector is calculated as:

x =

(
1

4 f

)
y2 (3.4)

z =

(
1

4 f

) (
x2 + y2

)
. (3.5)
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Figure 3.3: Conceptual drawing of the sparse reflector

To then discretize the geometry for the ray-tracing procedure, the x and y coordinates are

sampled every 0.1 meters and the limits are determined from the sparse reflector diameter as

±75m. Equations (3.4) and (3.5) are used with the discrete values of y to solve for x and

discrete values of x and y to solve for z respectively. MATLAB® is used to generate the

plots shown in Figures 3.3 and 3.4. Finally, the surface area calculations and the comparison

of dimensions to wavelengths are presented in Section 4.1.

3.1.4 Ray-Tracing Procedure: Cross-shaped, Parabolically Contoured Reflector.

The ray-tracing procedure is implemented for the sparse reflector using MATLAB®.

However, in this case, the user inputs are the diameter, arm width, and arm length shown in

Figure 3.3; the focal length; and the number of incident rays for any 2-Dimensional section

of the reflector. From these inputs, the code generates 2-Dimensional and 3-Dimensional

plots of the reflector with incident, normal, and reflected rays. The same MATLAB®

functions mentioned in Section 3.1.2 are used to perform the plotting.
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Figure 3.4: Side-looking view of the sparse reflector

In contrast to the ray-tracing code for the spherical reflector, the surface normals and

reflected rays are calculated differently because of the parabolic contour. In the case of the

spherical reflector, the surface normals are rays that converge at the center of the sphere

describing the spherical contour of the reflector. For the sparse reflector geometry, the surface

normals are calculated by defining a line tangent to the reflector at each point of incidence

and rotating it by π/2, about the proper axis according to the local coordinate frame. The

tangent line is created by drawing a line between two points: the point of incidence and a

second point which is calculated by computing the derivative of the parabolic function and

evaluating it at a point different from the point of incidence.

Another contrasting method in performing ray-tracing for the sparse reflector is

calculating the reflected rays. The angle between each incident ray, I, and its corresponding

surface normal, N, is computed by rearranging the dot product of each incident and normal

vector. This rearrangement is given as:

θ = π − cos−1
(

I · N
|I| |N|

)
. (3.6)
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The reflected ray is then constructed by rotating the normal vector about an axis tangent to

the reflector by the angle θ using the following vector rotation matrix:


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 . (3.7)

See Section 4.1.2 for the resulting plots and discussion of the ray-tracing procedure

for the sparse reflector. Finally, see Section A.2 for the code developed to perform the

ray-tracing procedure for the sparse reflector.

3.2 Plane Wave Analysis

To further determine the performance of each reflector antenna, plane wave analysis is

performed on each reflector. The plane wave analyses in this research are basic and do not

include an angular spectrum or le-space analysis. Optical methods are used for the spherical

reflector because they reduce the complexity of analysis by making special approximations.

These approximations include:

1. The surface area is assumed to be much greater than the edge surface area for the
reflector assuming a 10λ wide ring around each reflector [14].

2. The reflector is much larger than a wavelength (L-Band) [14].

3. The reflector is symmetric about the optical axis (axis extending from the center of
the reflector) [14].

4. The radius of curvature for the spherical reflector and the focal length for the sparse
reflector is large in comparison to a wavelength [14].

5. The incident waves are planar or their deviation from planar is less than 1/4 of a
wavelength [14].

It is shown in Table 4.1 that these approximations are applicable to both reflectors

discussed in this thesis. Therefore, plane wave analysis using optical methods is a valid

approach to determining the performance of each reflector. However, optical methods are
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only used for the spherical reflector. For both reflectors, the assumed acceptable phase ripple

is not determined and is not addressed in this research.

Plane wave analysis is a method of analyzing the fields scattered from an object with

a plane wave incident upon its surface. A plane wave is an electromagnetic field with a

source far enough away (Far-Field (FF)) such that its wavefront is planar meaning all the

energy across the plane is equal in amplitude and phase [3] [6] [14] [16]. For the reflectors

discussed in this thesis, plane wave analysis can be understood as receiving mode, which by

reciprocity, will yield the same results as if the antenna system were in transmitting mode.

Each reflector is analyzed differently due to its different cross-section shape and contour. The

following subsections address each reflector and the specific plane wave analysis method

employed.

3.2.1 Rectangular Shaped, Spherically Contoured Reflector.

From the theory and shown from the ray-tracing procedure performed in Section 3.1.2,

the spherical reflector has inherent focusing errors known as spherical aberrations. These

errors will cause a phase progression at the paraxial focus point from the energy spreading.

This phase progression causes destructive interference which decreases the received signal

strength, and if the signal phase is encoded with a message, that message will be lost.

Therefore, it is vital that these aberrations be corrected at the paraxial focal point. To obtain

a quantitative description of the aberrations, the reflector is analyzed in receive mode with a

plane wave incident upon the surface.

Equation (3.8) describes a plane wave propagating through free-space

Ei = x̂E0e− jk0z. (3.8)

The coordinate convention used in this section is shown in Figure 3.5. In Equation (3.8),

the subscript i indicates incident wave, E0 is an arbitrary amplitude, the negative argument

for the exponential term indicates a positive traveling wave, and k0 is the free-space wave
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number equal to 2π
λ

. For this analysis, the frequency is within the L-Band. This plane wave

is then incident upon the surface of the reflector and the reflections are directed toward the

paraxial focus. To visualize the aberrations at the paraxial focus, an image plane was placed

there to capture the reflected energy. To calculate the amplitude and phase of the reflected

energy, two optical methods were used: Fourier Analysis and Fresnel-Kirchoff Diffraction

Integral (FKDI) analysis.

Figure 3.5: Coordinate convention used for Plane Wave Analysis of the rectangular shaped,
spherically contoured reflector

Using Fourier analysis, the amplitude distribution on the image plane where the

reflected energy is incident is the Fourier transform of the aperture equivalent current

sources. These sources are related to the tangential field components on the reflector surface

[14] [24]. The plane wave incident upon the already discretized reflector surface yields a

discrete representation of the energy on the reflector. More specifically, it is a representation

of the same plane wave, with an added phase progression, due to the curvature of the

reflector. A Discrete Fourier Transform (DFT) calculates the amplitude distribution in the
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image plane. Section 4.2.1 shows the resulting image planes with on and off axis plane

waves incident.

FKDI analysis is a similar method to the Fourier analysis method, but differs in that

it accounts for the known aberrations and allows for further off-axis calculations [14].

Equation (3.9) describes the FKDI method [14] [24]

U(x, y) =
E0

jλ

"
S

e jk(ri−rr)

rirr

[
cos−1(n(x, y) · rr(x, y)) − cos−1(n(x, y) · ri(x, y))

2

]
dS . (3.9)

As can be seen, Equation (3.9) resembles a 2-Dimensional Fourier Transform with a different

Kernel function. The integration is performed over the surface of the reflector, S, and the

function U(x, y) is the resulting image. Also, the cosine terms shown represent a projection

of the second vector in the argument projected onto the first. Finally, the vector ri is the

incident ray, the vector rr is the reflected ray, and the vector n is the surface normal at the

point of incidence. See Figure 3.6 for an example of a single incident ray, reflected ray, and

surface normal.

Figure 3.6: Illustration of vectors used in performing the FKDI computations
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The FKDI proves to be a more useful method for calculating the image of reflected

energy because non-uniform grids, 3-Dimensional grids, and off-axis angles of incidence can

be used [14] [24]. In this research, off-axis results are generated to visualize the aberrations

that the feeding structure must correct.

Implementing the FKDI is approximated by replacing the integral with a summation.

This is shown in Equation (3.10) [24]. The index n indicates that the reflector surface is

divided into N discrete parts

U(x, y) ≈
E0

jλ

N∑
n=1

e jkn(rin+rrn)

rinrrn

[
cos−1(nn(x, y) · rrn(x, y)) − cos−1(nn(x, y) · rin(x, y))

2

]
∆S .

(3.10)

The results of using the FKDI are presented in Section 4.2.1 where both on-axis and off-axis

images are shown. Also presented is a discussion about the steering capabilities of the

reflector system by moving the feeding structure.

3.2.2 Cross-shaped, Parabolically Contoured Reflector.

The cross-shaped, parabolically contoured reflector (sparse reflector) antenna does not

have aberrations as the spherical reflector does. As stated earlier, a parabolically contoured

reflector focuses incident energy to a single point. The placement of a feeding structure for

a parabolically contoured reflector is often at the focal point. This is the case for the sparse

reflector. In contrast to the spherical reflector, feed placement is not an issue. However,

there is still a need to determine the radiation characteristics of the sparse reflector because

of its custom-shaped cross-section. Therefore, a different method of performing plane wave

analysis is used for the sparse reflector.

SATCOM™, a Computational Electromagnetics (CEM) software package developed

by The Ohio State University Electro-Science Laboratory, is the software chosen to perform

the plane wave analysis of the sparse reflector. SATCOM™ requires that an antenna system

have a feed specified because the analysis is always performed using the transmit mode of
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the antenna. Because the feed placement is already known for the sparse reflector, a feeding

structure that is capable of providing a uniform illumination of the sparse reflector is needed.

Therefore, as opposed to the previous plane wave analysis on the spherical reflector, the

sparse reflector is analyzed using the transmit mode. Providing that the sparse reflector

is in the Far-Field (FF) region of the feeding structure and the FF radiation pattern of the

feeding structure nearly provides uniform illumination of the sparse reflector, it is analogous

to an incoming plane wave incident upon the sparse reflector. Therefore, a feeding pattern is

devised to meet these criteria.

Following an example found in [4], the needed FF radiation pattern for a feeding

structure to uniformly illuminate a reflector antenna is given as:

U(θ, φ) = A0 cos42
(
θ

2

)
. (3.11)

The independence with respect to φ shows that this FF radiation pattern is φ invariant,

however in general, a FF radiation pattern depends on θ and φ. In order to verify this result,

this radiation pattern is plotted using MATLAB®. Figure 3.7 shows that this FF radiation

pattern illustrates an isotropic distribution of energy and given that the sparse reflector is in

the FF region with respect to the feed point, the incident energy upon the reflector is nearly

planar.

Two simulations, as opposed to one, are needed because the software cannot simulate

the sparse reflector cross-shape directly. Rather, the reflector is segmented into two

rectangular shaped, parabolically contoured reflectors which correspond to the horizontal

and vertical sets of arms respectively. The SATCOM™ feed design wizard is used to define

the FF pattern using Equation (3.11). After defining the input feed pattern, the simulation

is run in two segments using the same polarization (left-hand circular) and frequency (1.5
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Figure 3.7: Plot of the FF radiation pattern used as a plane wave source in plane wave
analysis for the sparse reflector

GHz) for each one. This is to ensure a similar field orientation is incident upon the reflector

in both simulations.

The outputs of the two simulations are combined by first exporting the data to a text

file format readable by MATLAB®. A script is then used to import the data to MATLAB®

and perform pattern addition, also referred to as a coherent summation. In particular, the

two patterns are summed together on a term by term basis to plot the overall resulting FF

radiation pattern of the sparse reflector. Section 4.2.2 presents the results from the plane

wave analysis simulations for the sparse reflector and Section A.4 presents the pattern

addition code.

3.3 Sky Study for the Rectangular Shaped, Spherically Contoured Reflector

A necessary procedure for designing and analyzing the rectangular shaped, spherically

contoured reflector (spherical reflector) is a study of to what region(s) in the sky the antenna

will need to steer. This study has been labeled as a sky study. As mentioned previously,

the design is expected to be used with Geosynchronous (GEO) satellites. The possible
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locations for the antenna system were also expected to be within the Continental United

States (CONUS) which led to the assumption that all GEO satellites over the CONUS were

of interest. Under this assumption, the sky study is accomplished in several steps. The first

is to contact sources at the Air Force Institute of Technology (AFIT) that have experience in

tracking satellites, plotting satellite trajectories, and calculating plots of azimuth-elevation-

range data. The second is to gather the satellite orbit data. The third is analyzing the data

and performing the calculations of the azimuth-elevation-range data. Finally, the fourth is to

draw conclusions based on the data to better constrain the steering needs of the spherical

reflector antenna.

The AFIT Department of Aeronautical and Astronautical Engineering Satellite Tracking

Group proved most helpful by referring us to a free, publicly available data source for

satellite trajectory information. The source is a web site that provides the satellite trajectory

information for nearly all satellites in GEO, Low Earth Orbit (LEO), and Medium Earth

Orbit (MEO) using the universal Two Line Element (TLE) format [25]. The source is known

as www.space-track.org. In order to gain access to the data, an individual must have a

justification and an association with either a government, academic, or industrial institution.

Registering for the web site was accomplished under the need to gather data for research at

AFIT.

Gathering the TLE data is a matter of downloading a compressed zip file that contains

all the GEO satellite data within text files. The data is updated twice daily. This is necessary

because the satellite orbits vary slightly throughout the year. The variation in orbit causes

what is known as an analemma to be traced by the satellite throughout the course of a

year. An example is shown in Figure 3.8. Because the CONUS is above the Equator, it is

important to consider that the analemma shape will be elongated because of the downward

looking angle on GEO satellite belt which is directly above the Equator. This elongation
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prompts yet another important question: What are the steering limitations in elevation? The

sky study also answers this question.

Figure 3.8: Illustration of an analemma pattern traced out by a GEO satellite over the course
of one year. This is only a specific example and does not account for all GEO satellites

To analyze the data, the TLE format first has to be explored. An example of the TLE

data associated with the international space station for a specific day is shown in Figure 3.9.

As described in [25], the data is arranged with the first line, referred to as line 0, containing

the common name of the object that is found in the satellite catalog (columns 01-24). The

second line, line 1, has a line number (column 01), the satellite catalog number (columns

03-07), the Elset classification (column 08), the international designator (columns 10-17),

the element set epoch or Coordinated Universal Time (UTC) (columns 19-32), the first

derivative of the mean motion with respect to time (columns 34-43), the second derivative of

the mean motion with respect to time (columns 45-52), the B* drag term which estimates the

atmospheric effects on the satellite motion (columns 54-61), the element set type (column
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63), the element number (columns 65-68), and a checksum (column 69). Finally, the third

line, line 2, has a line number (column 01), the satellite catalog number (columns 03-07),

the orbit inclination in degrees (columns 09-16), the right ascension of ascending node in

degrees (columns 18-25), the eccentricity (columns 27-33), the argument of perigree in

degrees (columns 35-42), the mean anomaly in degrees (columns 44-51), the mean motion

in revolutions per day (columns 53-63), the revolution number at epoch (columns 64-68),

and a checksum (column 69).

Figure 3.9: TLE example for the international space station

Plotting satellite tracks from the TLE data directly is outside of the scope of this thesis.

Therefore, performing the necessary calculations on the TLE data is accomplished using a

commercially available software known as Systems Tool Kit (STK) by Analytical Graphics

Inc. (AGI). This particular software package has the capability to import TLE data for

plotting the azimuth-elevation-range of a satellite. The text files that contain the TLE data

from all GEO satellites are imported to calculate and visualize an estimate of the trajectories

of all GEO satellites over the CONUS. The results are used to further refine the steering

capabilities of the spherical reflector. The plots and discussion from the sky study can be

found in Section 4.3.

3.4 Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector

A necessary procedure in designing and analyzing the cross-shaped, parabolically

contoured reflector (sparse reflector) antenna is designing and analyzing a baseline antenna

system to compare the performance of the sparse reflector. In particular, the goal is to

explore how well the sparse reflector performs against a 50 meter diameter circular shaped,
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parabolically contoured reflector, which has approximately the same surface area. The

circular shaped reflector is referred to as the “filled” reflector because it has a smooth,

continuous cross-section as opposed to the sparse reflector, which has a jagged, discontinuous

cross-section.

The approach to performing the baseline calculation is to first search for existing

antenna systems that are similar to the filled reflector. The search led to the large

reflector antennas of the DSN built and maintained by the National Aeronautics and Space

Administration (NASA). The design methodology and examples of the antenna systems

are published in [4]. A chapter within this resource explains the specific design of one of

the first NASA DSN reflector antennas which has been decommissioned. This antenna was

known as the Deep Space Station 11: Pioneer [4]. It was the first large DSN Cassegrain

antenna and was designed to operate in L-band, which is the frequency band of interest for

the sparse reflector. The only differences between the DSN Station 11 and the filled aperture

for this thesis are the dimensions and feeding antenna. However, in order to minimize design

time and the number of design iterations for the baseline calculation, the DSN Station 11

is used as the basis for the filled aperture. In particular, the proportion of the secondary

reflector diameter to the primary reflector diameter from the DSN Station 11 is used, but the

dimensions are scaled up to the required 50 meters. The resulting dimensions are shown in

Table 3.1. Note that the f /d ratio shown is the same as the sparse reflector.

With the geometry for the filled aperture in place, a feeding antenna is designed to

operate the filled aperture in L-Band. A standard choice for feeding a filled aperture is a horn

antenna [2] [6] [8]. In particular, for simplicity, a pyramidal horn is designed following the

design methodology for a pyramidal horn in chapter 13 of [2] and is shown in Figure 3.10.

The design method in use requires a desired gain to be specified, then the specified gain

is related to the width and height of the horn antenna. Finally from the width and height,

the length is calculated. Equation (3.12) shows the calculation of the intermediate quantity
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Table 3.1: Specifications for filled parabolic reflector Cassegrain system compared to the
DSN Station 11

Filled Aperture Contour Diameter Focal Length f /d ratio Distance
Between
Apex and
Primary
Source

Primary Parabolic 50m 26.67m 0.533
20m

Secondary Hyperbolic 6.8462m — —
DSN Station 11

Primary Parabolic 26m — —
—

Secondary Hyperbolic 3.56m — —

χ(trial) for a given gain G0. The subscript trial indicates that this is a procedure repeated until

desired results are obtained

χ(trial) = χ1 =
G0

2π
√

2π
. (3.12)

For this particular pyramidal horn, a gain of 20 dBi is used. The next design step is to

use Equations (3.13) and (3.14) to solve for the horn slant lengths, ρe and ρh, respectively

from χ and G0

ρe

λ
= χ⇒ ρe = λχ (3.13)

ρh

λ
=

G2
0

8π3

(
1
χ

)
⇒ ρh =

λG2
0

8π3

(
1
χ

)
. (3.14)

Then, to solve for the horn width and length, a1 and b1, the following equations are used:

a1 =
√

3λρh =
G0

2π

√
3

2πχ
λ (3.15)

b1 =
√

2λρe =
√

2χλ. (3.16)
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Finally, to solve the the horn height, the following equation is used:

pe = ph = (b1 − b)
(ρe

b1

)2

−
1
4

1/2

= (a1 − a)
(ρh

a1

)2

−
1
4

1/2

, (3.17)

where the dimensions a and b are the length and width of the waveguide feeding the horn

antenna. The resulting dimensions are shown in Figure 3.10.

Finally, using SATCOM™, the pyramidal horn antenna is simulated in an ideal

free-space environment to obtain the radiation pattern. The end use for this pattern is

then to provide an input to the filled aperture Cassegrain system. This is explained next.

Figure 3.10: Illustration of pyramidal horn antenna designed to feed the filled aperture
Cassegrain system

The final step in calculating the baseline is to simulate the performance of the

filled aperture system using CEM methods. This is accomplished with two simulations

performed using SATCOM™, which specializes in the design of antenna systems for satellite

communications. The software uses the Physical Theory of Diffraction in solving Maxwell’s
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equations for the Far-Field (FF) radiation pattern of an antenna system. The first simulation

uses an analytically specified antenna pattern as the feeding pattern to the filled aperture

system without the subreflector. The second simulation uses the pyramidal horn as the

feeding structure to the filled aperture with the subreflector. Section 4.4 shows the radiation

patterns of the pyramidal horn antenna and the results of the filled aperture system with the

analytical feed pattern and the pyramidal horn antenna as the feeding structures.

3.5 Feed Design for the Cross-shaped, Parabolically Contoured Reflector

Conventional antenna feed systems such as a basic horn antenna are not the optimal

choice for the sparse reflector due to the energy wasted in the segments between the reflector

arms. Therefore, two particular feed designs are proposed as possible feeding structures

for the sparse reflector. The first is an aperture that resembles the sparse reflector cross-

section. The second is a 2-Dimensional phased array that is comprised of two linear phased

arrays orthogonal to one another. These two concepts are shown in Figures 3.11 and 3.12

respectively. Pursuing these feeding structures that resemble the sparse reflector is motivated

by the inverse Fourier relationship between the directivity of the Far-Field (FF) radiation

pattern of an antenna and its spatial dimensions. This relationship can be summarized with a

scenario: an aperture antenna with a narrow rectangular opening will yield a FF pattern that

is more directive, or narrower in beamwidth, across the longer dimension of the aperture

and less directive, or wider in beamwidth, across the shorter dimension. The expectation

is that the horizontal segments of either feeding structure will generate a portion of the

FF radiation pattern that will correspond to the vertical segment of the sparse reflector.

Similarly, the vertical segment of either feeding structure is expected to generate a portion of

the FF radiation pattern that will correspond to the horizontal segment of the sparse reflector.

Therefore these feeding structures are expected to result in a minimal amount of energy

directed towards the sections between the arms of the sparse reflector.
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Due to the complexity involved in designing a feeding structure, only the aperture is

designed and analyzed in this thesis. This section of the thesis explores the use of an aperture

antenna by first applying eigenmode analysis using a Finite-Difference (FD) approach to

solve for the cutoff frequencies associated with a cross-shaped aperture. Then, using the

field distributions of the dominant Transverse Magnetic (TM) and Transverse Electric (TE)

modes, an equivalent problem is developed using Love’s Equivalence Principle to determine

the equivalent current densities within the aperture [16]. These current densities are then

used to solve for the radiated FF due to the original field distribution within the aperture.

Section A.3 presents the program used to perform all computations developed in this section.

Figure 3.11: Cross-shaped aperture concept for feeding structure of sparse reflector

In starting this design process, the degrees of freedom are first identified as the

dimensions of the aperture in Figure 3.11 labeled as W and H. These variables are to

be refined as more design iterations are performed. In this first iteration, the dimensions

W and H are determined by calculating the necessary First Null Beam Width (FNBW)

for the dimensions of the sparse reflector. Figure 3.13 shows an illustration of the needed
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Figure 3.12: Cross-shaped phased array concept for feeding structure of sparse reflector

beamwidths. These angles are determined by studying the right triangle formed by the focal

point, the center point of the reflector translated to be colinear with the edge of the sparse

reflector, and the edge point of the sparse reflector. This triangle is shown in Figure 3.14.

The angle labeled θ/2 is calculated as

θ

2
= tan−1

(
75

62.42

)
= 50.23◦, (3.18)

which implies then that the FNBW for the largest dimension of the sparse reflector is 100.46◦.

By a similar token, the FNBW associated with the smaller dimension of the sparse reflector

is found to be 6.18◦.

Based on these FNBWs, the aperture dimensions are then calculated using

developments in [2]. In particular, Equation (3.19) shows the expression that relates the

needed beamwidth with a dimension of the aperture, b,

b =
sin

(
Θ
2

)
λ

, (3.19)
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Figure 3.13: The needed beamwidths to illuminate the entire cross-shaped reflector

where λ is the wavelength, Θ is the FNBW previously found, and b is one of the dimensions

W or H of the aperture.

3.5.1 Solving for the Field Distributions Within the Cross-Shaped Aperture using

a FD Approach to Eigenmode Analysis.

In order to calculate the FF radiation pattern from the aperture shape in Figure 3.11, a

solution of field distributions within the aperture is found using Eigenmode analysis. Solving

for the field distributions within a cross-section of a waveguide is analogous to solving for

the field distributions within an aperture. Both problems are 2-Dimensional problems only

needing solutions in the transverse directions and not the longitudinal direction. Figure 3.15

shows the coordinate convention used in the eigenmode analysis. The origin is the lower left

hand corner of the aperture. The xy-plane contains the aperture and includes the transverse

directions. The z-direction is the longitudinal direction.
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Figure 3.14: Trigonometry used to solve for needed beamwidths and aperture feeding
structure dimensions

Figure 3.15: Coordinate convention used in Eigenmode analysis for cross-shaped aperture
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The equations to be solved for the TEz and TMz mode sets are derived from Maxwell’s

equations. The derivation for this 2-Dimensional problem yields the following two equations

[18]:

TMz Modes: (∇2 + k2
t )Ez = 0, Ez|Γ = 0 (3.20)

TEz Modes: (∇2 + k2
t )Hz = 0,

∂Hz

∂n

∣∣∣∣
Γ

= 0. (3.21)

The derivation details have been omitted here for brevity. Note that the partial derivative

with respect to n indicates with respect to the normal component. This component varies

depending on which boundary in the aperture the derivative is being applied. Also, the use

of Γ indicates evaluation at the boundary, where Γ is the overall boundary of the aperture.

Finally, kt is the transverse wavenumber associated with the aperture, which is equal to:

√
k2

x + k2
y =

2π
λ

(sin θ cos φ + sin θ sin φ).

Generalizing this problem results in the following equation [18]:

∇2u = λu u|Γ = 0 or
∂u
∂n

∣∣∣∣
Γ

= 0, (3.22)

where u can be either Ez or Hz for the TMz or TEz mode sets respectively. In generalizing

this problem, λ = −k2
t , which when the Laplacian operator is discretized, can be understood

as an eigenvalue. Therefore, the function u can be understood then as an eigenvector which

corresponds to later used equivalent current sources used to compute the FF pattern of the

cross-shaped aperture. Section 3.5.3 describes the discretization of the Laplacian operator

and the associated linear system that results.

After obtaining the eigenvalues, the cutoff frequencies of the waveguide can be

calculated. A cutoff frequency is the frequency where propagation through the waveguide
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stops and can be found from the following relationship [16] [18] [26]:

k2
t +�

�k2
z = k2

0, (3.23)

where the �
�k2
z indicates that kz = 0 meaning no propagation occurs. Therefore, using the

relationship λ = −k2
t and Equation (3.23), the cutoff frequencies can be solved as:

fc,mn =
1

2π

√
−λmn

µ0ε0
, (3.24)

where the subscript c indicates cutoff, the subscript mn stands for mode number (i.e. TE10),

and the substitutions k =
2π f

c , c =
√
µε, and λ = −k2

t have been made. c is the speed of light

in free space, µ0 is the permeability associated with the medium, and ε0 is the permittivity

associated with the medium.

3.5.2 Solving for the FF Radiation Pattern of the Cross-Shaped Aperture Using

Love’s Equivalence Principle.

Applying Love’s Equivalence Principle simplifies the problem by allowing for the use

of the Free Space Green’s Function (FSGF) shown in Equation (2.64). The FSGF can then

be used as a kernel in the radiation integrals shown later, which simplifies their evaluations.

The form of the FSGF takes advantage of the FF approximation, which means the function

can be split into two distinct portions; one with respect to only the observer or FF and one

with respect only to the source. This split in the function means the FF portion can be moved

outside of the radiation integral because the integration is only evaluated over the source

variables.

61



From Maxwell’s equations, the field set relations for the TMz and TEz modes for

2-Dimensional Cartesian geometries can be written as:

TMz :

∇t ×Ht = ẑJz + ẑ jωεEz

∇t × (ẑEz) = −Mt − jωµHt

∇t ·Ht =
qmv
µ

= −∇t ·Mt
jωµ

, (3.25)

TEz :

∇t × Et = −ẑMz − ẑ jωµHz

∇t × (ẑHz) = Jt + jωεEt

∇t · Et =
qev
ε

= −∇t ·Jt
jωε

, (3.26)

where the subscript t indicates transverse.

Equations (3.25) - (3.26) are general expressions for the field components in the TMz

and TEz cases where the following field components exist for each:

TMz : Ez,Hx,Hy, Jz,Mx,My, qmv

TEz : Hz, Ex, Ey,Mz, Jx, Jy, qev

.

In solving for the unknown equivalent current densities from Love’s Equivalence

Principle, the transverse field components within the aperture are necessary. From the

previous Eigenmode analysis, an approximation for the longitudinal field component is

known. Therefore, only the transverse field components need to be calculated. Realizing that

each of the second equations in Equations (3.25) - (3.26) contains the needed relationships

between the field components, the other equations may be ignored. Further developing the

equations and making the assumption that the aperture is source free, the equations become:

∇t × (ẑEz) = − jωµHt

⇒ Ht = −1
jωµ

(
x̂ ∂Ez
∂y − ŷ∂Ez

∂x

) , (3.27)
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∇t × (ẑHz) = jωεEt

⇒ Et = 1
jωε

(
x̂ ∂Hz
∂y − ŷ∂Hz

∂x

) . (3.28)

Using these expressions for the transverse field components, the equivalent current

densities are calculated by:

Jeq = 2ẑ ×Ht = −x̂
2

jωµ
∂Ez

∂x
− ŷ

2
jωµ

∂Ez

∂y
, (3.29)

Meq = −2ẑ × Et = −x̂
2

jωε
∂Hz

∂x
+ ŷ

2
jωε

∂Hz

∂y
. (3.30)

As stated previously, the goal of this development is to obtain the FF radiation pattern

of the cross-shaped aperture feeding structure. The FF region is a generalized term used to

describe being far enough away from a radiating structure such that radiated waves have a

planar wave front relative to the wavelength, λ. Also, the largest dimension of the radiating

structure, D, is used to describe the FF region of an antenna as can be seen in the following

estimate of the FF distance [2]:

R ≥
2D2

λ
. (3.31)

In the FF region, calculating the radiated fields is simplified because the integrands in

the integral equations can be approximated more easily (or solved in closed-form) and the

FSGF can be split into source and observer variable parts. Balanis develops the expressions

for calculating the FF radiated fields based on a particular current density in [2] and [16].

The details of the development are omitted here for conciseness, but the final expressions

are presented as:

Nθ =
∫

S
(Jx cos θ cos φ + Jy cos θ sin φ −����Jz sin θ)e− jkr′ cosψdS ′

Nφ =
∫

S
(−Jx sin φ + Jy cos φ)e− jkr′ cosψdS ′

, (3.32)
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Lθ =
∫

S
(Mx cos θ cos φ + My cos θ sin φ −����Mz sin θ)e− jkr′ cosψdS ′

Lφ =
∫

S
(−Mx sin φ + My cos φ)e− jkr′ cosψdS ′

, (3.33)

Eθ '
− jke− jkr

4πr (Lφ + ηNθ)

Eφ '
jke− jkr

4πr (Lθ − ηNφ)
. (3.34)

The ����Jz sin θ and ����Mz sin θ terms are used to indicate that no z component exists for the

equivalent current densities within the aperture. Also, the r′ cosψ terms shown in the

exponentials become x′ sin θ cos φ + y′ sin θ sin φ by the coordinate convention used in

Figure 3.15. Finally, as mentioned in Chapter 2, the primed variables are referred to as

source variables and the unprimed variables are referred to as observer or FF variables.

Section 3.5.4 describes the numerical methods for approximating the equivalent current

densities and calculating the resulting FF radiation patterns.

3.5.3 Discretizing the Laplacian Operator Using a Central Difference Approxima-

tion.

As shown previously, the Laplacian operator needs to be discretized for a given aperture

grid. The discretization is best accomplished by applying a stencil to the grid. The stencil

used in this thesis is a central difference approximation of the second derivatives [18]. This

is written generally as:

∂2u(x, y)
∂x2 ≈

u(x + ∆x, y) − 2u(x, y) + u(x − ∆x, y)
∆x2 , (3.35)

where u is a place holder for a 2-Dimensional scalar function and ∆x is the step size on the

x dimension of the grid.

Applying this stencil to the laplacian operator in Equation (3.22) yields the following:

∇2u(x, y) ≈
u(x + h, y) − 2u(x, y) + u(x − h, y)

h2 +
u(x, y + h) − 2u(x, y) + u(x, y − h)

h2 ,

(3.36)
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where it is assumed that ∆x = ∆y = h.

This stencil can be applied to any generalized grid in a systematic fashion. The

application is to a columnwise indexed grid as shown in Figure 3.16. It is worth noting at

this point that the boundaries are set as zeros which implicitly takes care of the TMz boundary

conditions shown in Equation (3.20). The TEz boundary conditions in Equation (3.21) are

handled explicitly as can be seen in the code found in Section A.3.

Figure 3.16: Illustration of how the discrete grid for the cross-shaped aperture is indexed for
numerically evaluating the Laplacian operator

The creation of the grid shown in Figure 3.16 is performed using the MATLAB®

function numgrid( ) to generate the grid for use with a FD algorithm. However, in order to

generate the cross-shaped grid, a special case is added to the function where a given fraction

is used with boolean algebra to determine which columns and rows to omit.

To apply the stencil to the grid shown in Figure 3.16, the MATLAB® function delsq( )

is used. This function expects an input FD grid indexed columnwise and generates the

discrete Laplacian matrix assuming unit step size. In solving for the cutoff frequencies from
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the eigenvalues, Equation (3.24) must be modified to account for step sizes other than unit

step size. This modification is shown in Equation (3.37):

fc,mn =
1

2πh

√
−λmn

µ0ε0
. (3.37)

Figure 3.17 shows the pattern of the discrete Laplacian output by the delsq( )

function. MATLAB® stores the output as a sparse matrix data structure due to the large

number of zeros in the matrix. Operating on a sparse matrix data structure results in faster

computation of the eigenvalues and eigenvectors which is accomplished by use of the

eigs( ) function. Equation (3.24) is then used to calculate the cutoff frequencies from the

eigenvalues.

3.5.4 Numerically Computing the FF Radiation Pattern of the Cross-Shaped

Aperture.

In order to numerically compute the equivalent current sources that result from

Love’s Equivalence Principle, an approximation to the partial derivatives shown in

Equations (3.29) - (3.30) must be made. As shown previously, the central difference

approximation for derivatives is a good choice for this task. Applying the central difference

approximation yields the following expressions for the equivalent current densities:

Jeq ≈ −x̂ ��2
jωµ

Ez(x, y + h) − Ez(x, y − h)
��2h

− ŷ ��2
jωµ

Ez(x + h, y) − Ez(x − h, y)
��2h

, (3.38)

Meq ≈ −x̂ ��2
jωε

Hz(x, y + h) − Hz(x, y − h)
��2h

+ ŷ ��2
jωε

Hz(x + h, y) − Hz(x − h, y)
��2h

. (3.39)

The last large step in obtaining the FF radiation pattern of the cross-shaped aperture is

performing the integrations to obtain the N and L FF potentials vector components. Given

that the current densities are in a numerical format as opposed to an analytical expression,
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Figure 3.17: Discretizing the Laplacian operator generates a sparse matrix that follows a
specific pattern as shown here

this problem lends itself to numerical integration techniques. In particular, the nine-point

integration rule from [27] is the method of choice.

The nine-point integration rule uses nine points in a single subdomain as shown in

Figure 3.18 and sums the function evaluated at them with proper weights applied to each
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evaluated point. Equation (3.40) shown as:

I = 4h2
∑

i

wiφ(xi, yi, 0), (3.40)

illustrates the evaluation over a single subdomain shown in Figure 3.18 with the weights

listed in Table 3.2. The function φ(x, y, z) is a generalized function of 3 variables which is a

place holder for the equivalent current densities. To further apply this method, the replication

of subdomains across the aperture until all the points are included is accomplished by having

the center point for each subdomain lie outside of the adjacent subdomain boundaries by

1 sample. A certain number of grid points must be used to accomodate the nine-point

integration rule properly. Otherwise, other rules would be needed. For this research, the

choice of N = 165 is used.

Computing the N and L FF potentials vector components is accomplished using four

nested for-loop constructs: two for-loops over the observer variables, one over all of the

subdomains within the aperture, and one over the nine points in each subdomain.

Figure 3.18: A single subdomain used to perform Nine-Point Integration over the cross-
shaped aperture

See Sections 4.5 and 5.5 for the results and discussion from the method presented in

this section. Also, see Section A.3 for the program developed for this method.
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Table 3.2: Nine-point integration rule weights

i x y wi

1 -h -h 1/36

2 0 -h 1/9

3 h -h 1/36

4 -h 0 1/9

5 0 0 4/9

6 h 0 1/9

7 -h h 1/36

8 0 h 1/9

9 h h 1/36
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IV. Results & Analysis

The results from each step in the methodology are presented in this chapter along

with analysis. This chapter presents results from the geometrical analysis of both reflector

antennas, the ray-tracing of both reflector antennas, the plane wave analysis of each reflector

antenna, the sky study for the rectangular shaped, spherically contoured reflector (spherical

reflector), the baseline antenna calculation for the cross-shaped, parabolically contoured

reflector (sparse reflector) antenna, and finally the results from designing the cross-shaped

aperture feed antenna for the sparse reflector.

4.1 Geometrical Analysis

As shown earlier in Section 3.1.1, the degree of freedom for the spherical reflector

is the radius of curvature. The radius of curvature is then related to the known width and

height dimensions of 304.8 meters and 91.44 meters by using the equation for the length of

a chord of a circle, given in Equation (3.1). In the plane wave analysis and sky study, it is

shown that a radius of curvature of 60.96 meters is feasible. Compared to the sparse reflector,

which has no degree of freedom with respect to the geometry, the spherical reflector has

more geometrical analysis to finalize its geometry before proceeding to designing a feeding

antenna. However, the main objective of analyzing the geometry of each reflector is to

obtain several figures of merit, shown in Table 4.1. In particular, it is seen that the largest

dimension of each antenna is on the order of 1000λ. It is typical that a geometry be sampled

ten times per wavelength in the discretization for a Computational Electromagnetics (CEM)

solution [18]. This requirement is slightly different for time-domain methods which must

satisfy the Nyquist-Shannon Sampling Theorem [18]. From Table 4.1 and following the

sampling requirements for a CEM solution, a mesh cell or sample count will be on the order

of 106. Performing the simulation for a mesh cell count on the order of 106 is not feasible for
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Table 4.1: Geometrical analysis results of each reflector

Rectangular
Shaped, Spheri-
cally Contoured
Reflector

Cross-Shaped,
Parabolically
Contoured
Reflector

Wavelengths of Operation (m)
(IEEE L-Band)

0.1499 - 0.2998 0.1499 - 0.2998

Largest Dimension of Reflector
(m)

304.8 150

Number of Wavelengths Across
Reflector Largest Dimension

1016.68 - 2033.36 500.33 - 1000.67

Approximate Reflector Surface
Area (m2)

27870.9 2022

Approximate Reflector Edge
Surface Area (10λ ring) (m2)

1187.93 - 2375.85 469.91 - 939.81

Radius of Curvature/Focal
Length (m)

609.6 - 1524 80

current computing systems. This limitation leads to the use of less computational intensive

methods to analyze the reflector antennas for this thesis. These include ray-tracing and

Far-Field (FF) analyses of the reflectors using optical approximations.

4.1.1 Ray-Tracing Procedure: Rectangular Shaped , Spherically Contoured

Reflector.

In performing ray-tracing, there is no strict requirement for sampling the reflector.

Therefore, for this thesis, the height and width of the spherical reflector are sampled ten

times to visualize the caustic surface and keep runtime short. The use of the MATLAB®

surf( ) command creates a continuous surface for visualization purposes, which is the

main objective of ray-tracing. Then, using the quiver( ) and quiver3( ) commands,

the rays are plotted at each step along the grid. The calculations for the rays are described in

Section 3.1.2.

Figure 4.1 shows the resulting 2-Dimensional ray-tracing cross-section for the spherical

reflector. The axes are marked in meters showing an accurate representation of the spherical
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reflector with a radius of curvature equal to 60.96 meters. The scale of the plot makes it

difficult to see the formation of the caustic envelope. The caustic envelope is explained in

Section 2.1. Figure 4.1 is presented at this scale to show that the rays are focusing near a

point that is measured to be half the radius of curvature away from the spherical reflector.

This point constitutes the paraxial focus. An expanded plot is shown around the paraxial

focus where the caustic envelope forms. However, as compared to the example spherical

reflector in Section 2.1, this caustic envelope is smaller relative to the spherical reflector.

Reduction in the size of the caustic envelope is attributed to the very long radius of curvature.

The spherical reflector appears nearly flat at the scale it is presented, but the expanded view

of the caustic envelope shows that the reflector is indeed spherically contoured.

Figure 4.1: Ray-tracing for 2-Dimensional cross-section of the spherical reflector with
formation of caustic envelope highlighted. Only the incident and reflected rays are plotted.

72



Figure 4.2 shows an extension to the 2-Dimensional ray-tracing figure. The spherical

reflector is shown as a solid surface with several incident rays and the corresponding reflected

rays. Again, the scale of the plot is not conducive to viewing the caustic envelope and

thus an expanded plot is shown to clarify it. The 3-Dimensional plot agrees well with the

2-Dimensional plot showing that the caustic envelope for this particular radius of curvature

and reflector size is not as large, relative to the spherical reflector, as the caustic envelope,

relative to the example reflector discussed previously in Section 2.1. This reduction in size

of the caustic envelope cause the rays to nearly converge to a single point. However, the

spherical aberrations cause phase errors, meaning a correction must be performed by the

feeding structure for the spherical reflector. In regards to these aberrations, the wavelength,

λ, is the figure used to measure aberrations or phase errors. In particular, if the energy

received at the paraxial focus is out of phase by λ/4, significant losses in received signal

will occur due to destructive interference. In other literature, a more conservative figure

of λ/16 is used as the maximum tolerable phase error [1]. The results of the plane wave

analysis later illustrate this loss in received energy and the energy spreading that occurs due

to the aberrations. Also, the feeding structure dimensions are proposed based on physical

steering constraints, the plane wave analysis results, and the sky study results.

4.1.2 Ray-Tracing Procedure: Cross-shaped, Parabolically Contoured Reflector.

As stated previously, there is no sampling requirement for performing ray-tracing as

opposed to applying CEM methods. Therefore, the same sampling as the spherical reflector

of 10 rays per 2-Dimensional cross-section is used. The 2-Dimensional ray-tracing for the

sparse reflector is shown in Figure 4.3. As can be seen, the incident rays all reflect to a single

focal point that is 80 meters away from the apex of the reflector as expected. The scale

that the reflector is presented is too large to clearly see the focal point and so an expanded

view is shown for clarification. Also note that the small rays protruding from the reflector

are the surface normals as calculated using the method presented in Section 3.1.4. The
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Figure 4.2: Ray-tracing for 3-Dimensional cross-section the spherical reflector with
formation of caustic envelope highlighted. Only the incident and reflected rays are plotted.

calculation of the surface normals for the sparse reflector is not as simple as for the spherical

reflector, and therefore the surface normals are shown in Figure 4.3 for reference to ensure

the calculations are performed properly.

Similar to the spherical reflector ray-tracing, a 3-Dimensional extension of the 2-

Dimensional ray-tracing for the sparse reflector is presented. The resulting 3-Dimensional

ray-tracing is shown in Figure 4.4 with two viewing angles for better visualization of the

overall reflector. All rays again are shown and the focal point is highlighted. Figure 4.4

agrees well with Figure 4.3 clearly showing that no aberrations are present. Placing a feeding

structure at the focal point produces the best results for the reflector antenna system. The

feeding structure will not have to correct for aberrations. This means less sophisticated
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Figure 4.3: Ray-tracing for 2-Dimensional cross-section of the sparse reflector with focal
point highlighted

designs, such as aperture antennas or phased arrays, can be explored in contrast to beam

waveguide or Gregorian systems, which correct for aberrations [4] [5] [28].

Also, as a noteworthy design constraint, steering the antenna beam for the sparse

reflector must be accomplished by steering the reflector and feeding structure simultaneously,

posing a mechanical limitation. Designing the steering mechanisms for the sparse reflector

is outside the scope of this thesis.

4.2 Plane Wave Analysis

This section is divided into two subsections, one for each reflector antenna examined

in this thesis. The spherical reflector is analyzed using optical methods due to its electrical

size and spherical contour. In particular, the aberrations caused by the spherical contour
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Figure 4.4: Ray-tracing for 3-Dimensional cross-section of the sparse reflector: (a) Oblique
view illustrating cross-shape (b) Side-view with focal point highlighted

are considered in devising the feeding structure dimensional limitations and the steering

limitations of the spherical reflector via moving the feeding structure. The methods are

described in Section 3.2.1 and are implemented using MATLAB®. The results are presented

in the first subsection.

In contrast, the sparse reflector is analyzed by feeding it with an analytically developed

pattern and performing the simulation using a Physical Optics (PO) approximation in solving

the radiation integral in the Far-Field (FF). This simulation is performed using SatCom™

software. The results are presented in the second subsection.
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4.2.1 Rectangular Shaped, Spherically Contoured Reflector.

In analyzing the spherical reflector in its receive mode, a plane wave is incident upon

the surface. Equation (3.8) shows the analytical representation of the plane wave in the

coordinate convention presented in Figure 3.5. As stated earlier, the same discretization

as for the ray-tracing is used. However, the sampling of the surface is increased to ensure

higher accuracy of the results. In applying the Fourier analysis method, a phase progression

is induced in the plane wave expression from being incident upon the surface of the spherical

reflector. The Discrete Fourier Transform is evaluated for the plane wave with the phase

progression to obtain the amplitude distribution on an imaging plane. The plot of this is

shown in Figure 4.5 where the left hand plot shows the resulting amplitude distribution for

an on-axis plane wave incident on the spherical reflector and the right hand plot shows the

amplitude distribution for a plane wave incident at 5◦ azimuth and 2◦ elevation. The imaging

plane size was assumed as the maximum feeding structure size to avoid unwieldiness when

moving it for steering purposes. The dimensions are further refined when using FKDI

analysis.

The amplitude distribution is shown to be focused in both plots in Figure 4.5, but with

lobing more prominent along the vertical axis. The vertical axis here corresponds to the

shorter dimension of the spherical reflector. This lobing is caused by diffraction of the

incident energy due to the finite extents of the spherical reflector. The Fourier Integral

Transform is an infinite transform, but when performed discretely, must be truncated. If

the Fourier transform is evaluated over a smaller aperture, more lobing will be seen in

the imaging plane amplitude distribution. Thus, diffraction is not accounted for in Fourier

analysis as can be seen. Looking now at the off-axis amplitude distribution, it again exhibits

the lobing, but its center point has shifted due to the off-axis angle of incidence. The shifting

of the center point for an off-axis incident plane wave is correct; however, the Fourier

analysis fails to illustrate the energy spreading that takes place. The energy spreading is
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caused by the spherical aberrations or phase errors inherent to the spherical reflector. Due to

this inaccurate representation of the amplitude distribution from off-axis energy, the more

accurate Fresnel-Kirchoff Diffraction Integral (FKDI) method is used, which accounts for

diffraction.

Figure 4.5: Left: On-axis propagation, no blockage amplitude distribution calculated using
Fourier Analysis; Right: Tilted propagation at 5◦ azimuth and 2◦ elevation, no blockage
amplitude distribution calculated using Fourier Analysis

Using Equation (3.10) from Section 3.2.1, the plots shown in Figure 4.6 are calculated.

To ensure the data remained comparable for both methods, a similar experiment as for

the Fourier analysis method is performed for the FKDI method. The only differences are

that the image plane is shifted to keep the amplitude distribution centered as the incident

energy angle changes to better visualize the energy spreading; and the imaging plane size is

different because of the design decision to keep the feeding structure 10 meters by 10 meters.

The Fourier analysis method determines the amplitude distribution center for shifting the
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imaging plane in the FKDI method. The left hand plot in Figure 4.6 shows the amplitude

distribution calculated on the imaging plane for an on-axis plane wave and the plot on the

right shows the amplitude distribution calculated for a plane wave incident at 5◦ azimuth

and 2◦ elevation. The first observation to notice is the energy spreading in both spots. The

energy spreading is caused by the spherical aberrations. Comparing the two plots shows that

as incident energy moves further off-axis, the aberrations become more apparent. The trail

of energy that forms behind the main focus in the amplitude distribution is a typical result of

spherical aberrations and gives insight into how a feeding structure should be designed. A

feeding structure should be designed to capture as much energy as possible, but it must also

correct for phase errors that will be at the paraxial focus. Correcting for these phase errors

can be accomplished several ways, including designing a sub reflector system that forces

the path length traveled by an incoming ray to be the same as any other incident path length

[5] [28], designing a continuous line source oriented along the paraxial [29], or designing a

2-Dimensional reconfigurable phased array. Each of these feeding structures would provide

a feasible solution; however, they will not be explored in this thesis.

The final result from this plane wave analysis is the steering limitations for the spherical

reflector. As stated previously, steering the antenna beam for the spherical reflector will be

performed by moving the feeding structure. Because the spherical reflector is symmetric

and does not have a single focal point, this method of steering is valid. Also, the spherical

reflector does not have to be moved for this steering method, removing the need to design

complex mechanisms for moving the primary reflector. For brevity, no plots of the received

energy are given for this result due to the number of plots resulting. However, limiting the

feeding structure to 10 meters by 10 meters in size led to the steering limitations of ±15◦

for azimuth and ±5◦ in elevation. The assumption made for imposing this limitation is that

the resulting phase errors at any angle within the constraints can be corrected in the feeding

structure to ensure that maximum energy is received. The sky study originally presented in
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Figure 4.6: Left: On-axis propagation, no blockage amplitude distribution calculated using
FKDI Analysis; Right: Tilted propagation at 5◦ azimuth and 2◦ elevation, no blockage
amplitude distribution calculated using FKDI Analysis

Section 3.3 uses the imposed steering limitation from this section. The results from the sky

study are presented in Section 4.3.

4.2.2 Cross-shaped, Parabolically Contoured Reflector Geometry.

Following the method presented in Section 3.2.2, the FF radiation pattern for the sparse

reflector is shown in Figure 4.7 from two angles. Again, this plot is generated using a

pattern addition post processing step in MATLAB® operating on data from two SatCom™

simulations. The individual sets of arms of the sparse reflector are simulated separately due

to the limitation in SatCom™ analyzing custom-shaped reflector antennas.

As expected, the sparse reflector FF radiation pattern shows a large amount of energy

directed along the arms of the reflector surface (left hand plot of Figure 4.7). Between the

arms little to no energy is being directed. The boresight of the antenna or the main beam

has a First Null Beam Width (FNBW) that measures ≈ 0.8◦ making for a narrow “pencil
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beam” with a directivity of 50.58 dB. These are good results and expected because the

sparse reflector is a large parabolically contoured reflector. Parabolically contoured reflector

antennas are highly directional, as shown in literature [2] [4] [6] [8]. In particular, the

larger a reflector becomes, the narrower the main beam becomes. Steering a parabolically

contoured reflector is accomplished by moving the primary reflector and its feeding structure

in unison to keep the feeding structure at the focal point of the reflector. Therefore, for

the sparse reflector, steering is to be accomplished by moving the reflector and its feeding

structure together.

The right hand plot, in Figure 4.7, shows a very large back lobe. This back lobe is

quantified using the front to back ratio figure of merit calculated as:

(F/B)ratio = U(0, φ)dB − U(π, φ)dB, (4.1)

where U(θ, φ)dB is the FF radiation pattern function in dB. The evaluation at θ = 0 and θ = π

indicate evaluation at the front and back respectively. Using Equation (4.1), the front to

back ratio for the sparse reflector is 37.32 dB. This will be later compared to the baseline

antenna system in Section 5.4.

Feeding the sparse reflector with a plane wave results in a uniform illumination of the

entire circular cross-section of the sparse reflector. This illumination includes the arms of the

reflector and the blank areas between the arms, resulting in a large amount of energy passing

by the reflector. In addition, the sparse reflector has an increased amount of edge surface

area as opposed to a filled reflector causing additional diffraction to occur. This additional

diffraction means that more energy bends around the edges and therefore passes by the

reflector. It is concluded that the large backlobe shown in Figure 4.7 is caused collectively by

energy that is not incident on the sparse reflector and energy that diffracts around the edges

of the sparse reflector. Figure 4.7 further confirms this conclusion because the cross-section

of the sparse reflector is outlined in the back lobe.
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Figure 4.7: FF radiation pattern for the sparse reflector, in dB, with plane wave incident.
Plot generated using MATLAB® and data generated by SatCom™

The results of the plane wave analysis of the sparse reflector clearly show that the

sparse reflector must have a feeding structure that is optimized in order to be used effectively.

Optimization, in this context, means that the feeding structure must direct more energy

towards the arms of the sparse reflector and less energy towards the blank areas. Then in

receive mode, by reciprocity, the incident energy upon the sparse reflector will be better

received because the feeding structure is focused more towards where the sparse reflector

focuses energy. This increases the aperture efficiency of the overall sparse reflector system.

By the analysis presented here, the two feeding structure ideas presented in Section 3.5 were

generated. The cross-shaped aperture feeding structure is examined in this thesis and the

results are in Section 4.5.

4.3 Sky Study for the Rectangular Shaped, Spherically Contoured Reflector

In Section 3.3 the sky study is introduced. This section details the results and

implications from the sky study. Figure 4.8 shows a view of the Continental United

States (CONUS) with several points labeled. These include: Seattle, Los Angeles, Roswell,
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Miami, and Albany. There is no expectation that such locations can sustain an antenna

system such as the spherical reflector antenna, but the particular latitude of these sites is the

key point to note. The longitude is also relevant, but can be varied more without causing

additional sites to be needed. The sites labeled in Figure 4.8 follow a ‘U’ shaped pattern

across the CONUS. This shape shows that as the azimuthal steering angle tends towards

the horizon, the latitude of the antenna location should be increased to better aid in steering.

This relationship is observed because as an antenna location shifts up in latitude, its elevation

angle must be closer to the horizon to view the Geosynchronous (GEO) satellite belt and

the distance between the antenna and the GEO satellite belt increases. This downward

looking angle and increased distance causes a reduction in the azimuthal and elevation

steering angular ranges. Specifically, the stations closer to the coast have a higher latitude

to incorporate the satellites over the ocean within their azimuthal constraint of ±15◦ and

the stations towards the middle of the CONUS are lower in latitude to accommodate more

satellites directly above them within the same azimuthal constraint. Also, the stations higher

in latitude can view GEO satellites that trace out a larger analemma by looking downward

on the GEO satellite belt. Therefore, placing the stations at the particular latitudes shown

accommodated nearly all of the GEO satellites over the CONUS. Each of the antenna

locations in Figure 4.8 is limited in its viewing range by the steering constraints determined

from the plane wave analysis. Entering locations into the Systems Tool Kit (STK) software

package and experimenting their placements, five locations were needed to ensure nearly all

GEO satellites were in view of one or more spherical reflector antennas.

Figure 4.9 shows a constrained plot of the results from the sky study. In this

graphic, the GEO satellite belt is plotted with a line segment drawn to each satellite from

the corresponding intended viewing location. Note also that two satellites are omitted.

Removing these two satellites is justified to have the spherical antenna remain within its

design constraint of 91.44 meters in height. The satellites that are removed trace out a
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Figure 4.8: Resulting layout of locations needed to use the spherical reflector to communicate
with all GEO satellites over the CONUS. Note that the specific latitudes of these locations
is of interest and the city names are merely for reference.

very large analemma pattern throughout the year which causes them to be impossible to

steer the spherical reflector, while maintaining the spherical reflector dimensions previously

presented.

Finally, the criss-cross pattern of viewing angles from the antenna locations is important

to stay within the azimuthal limitation from the plane wave analysis and the dimensions of

the spherical reflector.

4.4 Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector

Geometry

Figure 4.10 shows a 2-Dimensional planar section of the FF radiation pattern of the

L-Band Horn antenna designed in Section 3.4. This pattern results from the SatCom™

simulation of the L-Band horn antenna at 1.5 GHz. The left hand plot is the magnitude plot

in dB, normalized to the maximum directivity and the right hand plot is the phase plot. The

black lines are the electric FF and the fuchsia lines are the magnetic FF.
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Figure 4.9: Resulting layout of locations needed to use the rectangular shaped, spherically
contoured reflector to communicate with all GEO satellites over the CONUS. This is shown
to illustrate the criss-crossing view angles from each antenna location

The FF plots for the L-Band horn show a Half Power Beam Width (HPBW) that

corresponds well to the secondary reflector shown in Figure 4.11. There is no section of

the secondary reflector that is not illuminated by the L-Band horn. Also, the phase plot

in Figure 4.10 shows a smooth phase progression over the HPBW which is acceptable

in analyzing the baseline antenna system. Had the design not been carried out properly,

phase errors may have been present that would cause destructive interference resulting in a

reduction in energy received or transmitted. Finally, it is shown that no cross-polarization

term is present in the FF radiation pattern of the L-Band horn antenna from the lack of a

dashed line in the plot. This means that all energy radiated by the antenna holds a constant
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polarization as expected. Having no cross-polarization term in the L-Band horn antenna

FF radiation pattern eliminates the possibility of cross-polarization problems caused by the

feeding structure of the baseline antenna system.

Figure 4.10: FF radiation pattern 2-Dimensional planar cut for the L-Band Horn antenna
designed for the baseline antenna system in Section 3.4

The FF radiation results of the L-Band horn antenna generated from SatCom™ are

used as the feeding structure for the baseline antenna system or the filled reflector. A wire

frame drawing of the filled reflector with its secondary reflector is shown in Figure 4.11 with

ray-tracing to visualize the qualitative performance of the antenna system before proceeding

to the full simulation. This particular model is an idealized model omitting mounting

structures and other blockages. However, the ability to add arbitrary blockages is possible in

SatCom™ and will be explored further in the follow-on work to this thesis.

Simulating the filled reflector antenna system with the L-Band horn antenna yields the

FF radiation pattern shown in Figure 4.12. As opposed to the results from the L-Band horn
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Figure 4.11: Wire frame view of the 50 meter diameter circular, parabolically contoured
reflector used as the baseline antenna system for the sparse reflector. Graphic generated
using SatCom™

antenna, the FF radiation pattern is not normalized to the maximum value and the electric

FF is shown only. However, the magnetic FF would be similar to the electric FF differing

only in polarization because the magnetic field is always orthogonal to the electric field.

Figure 4.12 shows a high directivity of the antenna system with a 41.43 dB peak in the main

beam, a FNBW that is ≈ 0.4◦, and a front to back ratio of 55.92 dB. Another important

aspect to note in Figure 4.12 is that the electric FF is mainly comprised of a θ component

denoted by the solid line in Figure 4.12 and the phase over the FNBW is relatively flat for

the electric FF. A flat phase is desirable to mitigate any unwanted destructive interference

that may occur as a result of phase deviations or errors.

87



Figure 4.12: FF radiation pattern 2-Dimensional planar cut for the baseline antenna system
fed by the L-Band Horn antenna shown in Figure 3.10

4.5 Feed Design for the Cross-shaped, Parabolically Contoured Reflector Geometry

The first set of results presented here are from applying the method shown in Section 3.5

on a square aperture as a test case. Figures 4.13 and 4.14 show the output mode shapes from

the code for the first 10 modes. These correspond well to the analytical solutions shown in

[26]. The mode struck out with an ‘X’ in Figure 4.14 indicates an invalid mode (i.e. TE00).

For the modal distribution plots generated in this thesis, the use of the MATLAB® eigs( )

merited a numerical fix in the post processing of the eigenvectors. In particular, a weighted

sum is used where two modes share a common cutoff frequency. This is required because

if two distributions output by the eigs( ) function share the same eigenvalue, the modal

plots would consistently show a slight skew to them. The skew was arbitrary because the

eigenvectors are not unique. Therefore, shifting the plots on-axis by applying a weighted

sum is valid because it is a linear operation using the eigenvectors generated by the eigs( )

function.
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Figure 4.13: First 10 TMz approximated modes, square aperture, N = 165

Figure 4.14: First 10 TEz approximated modes, square aperture, N = 165

Table 4.2 summarizes the results for Figures 4.13 and 4.14 by showing the cutoff

frequencies from the eigenvalues for the same square apertures computed numerically and
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Table 4.2: Cutoff frequencies for first 10 TMz and TEz modes respectively, Aperture
dimensions a = b = 0.405m

TMmn Numerical Cutoff (GHz) Analytical Cutoff (GHz)

TM11 0.526 0.523

TM21 0.832 0.827

TM12 0.832 0.827

TM22 1.053 1.046

TM31 1.177 1.170

TM13 1.177 1.170

TM32 1.342 1.334

TM23 1.342 1.334

TM41 1.535 1.526

TM14 1.535 1.526

TEmn

TE00 – –

TE10 0.374 0.370

TE01 0.374 0.370

TE11 0.529 0.523

TE20 0.749 0.740

TE02 0.749 0.740

TE21 0.837 0.827

TE12 0.837 0.827

TE22 1.059 1.046

TE30 1.123 1.110

analytically. The analytical cutoff frequencies are calculated using Equation (4.2) from [16]:

( fc)mn =
1

2π
√
µε

√(mπ
a

)2
+

(nπ
a

)2
. (4.2)

The final check for the methodology is the FF radiation pattern calculations. The test

case of a 3λ X 3λ aperture with a uniform field distribution is shown in Figure 4.15, where

90



the FF radiation pattern of the square aperture is shown in dB. The 2-Dimensional plot is

the φ = 0, 0 ≤ θ ≤ π/2 planar cut of the overall FF radiation pattern. A large main lobe

is centered about the z-axis, which is considered as the θ = 0 axis, followed by first side

lobes ∼13 dB down from the main lobe. This agrees with current literature and therefore

validating the method for calculating the FF radiation pattern of an aperture in this thesis [2].

It is important to note that from the use of Love’s Equivalence Principle, the FF radiation

pattern is valid only in the +z-direction. The plot in Figure 4.15 shows this valid region

because it omits any field calculations in the −z-direction, or where |θ|> π/2.

Figure 4.15: φ = 0, 0 ≤ θ ≤ π/2 planar cut of FF radiation pattern, in dB, of a 3λ x 3λ
square aperture excited by a uniform field distribution

Having tested the methodology using a known test case and proving it to be valid,

the next step is to simulate the cross-shaped aperture. As stated previously in Chapter 3,
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the expectation for the cross-shaped aperture is to mitigate the amount of energy directed

towards the regions between the arms of the sparse reflector. Figure 4.16 illustrates this

concept by showing a cross-shaped aperture of unknown dimensions suspended above the

sparse reflector. The dashed lines indicate where the cross-shaped aperture antenna beams

need to be focused. As stated earlier, the inverse Fourier relationship between the spatial

dimensions of an aperture antenna and its directivity in the FF pattern is the reason to explore

the use of the cross-shaped aperture as a feeding structure for the sparse reflector [2] [6].

Figure 4.16: Graphic showing the cross-shaped aperture feeding structure suspended above
the sparse reflector. The cross-shaped aperture is intended to avoid illuminating the regions
between the sparse reflector arms

Figures 4.17 and 4.18 show the resulting longitudinal field distributions for the first

10 modes of the TMz and TEz cases respectively. The results exhibit noticeable patterns
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that resemble the mode distributions of the square aperture, which was unexpected. Further

analysis will be needed to determine which mode is the best choice for exciting the cross-

shaped aperture feeding structure, but for this thesis, only the lowest order modes are

considered. Particularly, because the use of the lowest order modes is a typical approach to

feeding aperture antennas and the cutoff frequencies for the lowest order modes allow the

use of L-Band frequencies. However, the TM mode has a cutoff within the L-Band which

means it constrains the frequency range to only the upper portion of L-Band.

Figure 4.17: First 10 TMz approximated modes, Cross-Aperture, N = 165

The final plots in Figures 4.19 - 4.22 show the FF radiation pattern cuts of the cross-

shaped aperture excited by the lowest order TMz and TEz modes respectively. As before,

the particular planar cut is the φ = 0, 0 ≤ θ ≤ π/2 plane for Figures 4.19 and 4.20, however

the planar cut for Figures 4.21 and 4.22 is the φ = π/4, 0 ≤ θ ≤ π/2 plane. It is important to

note that from the use of Love’s Equivalence Principle, these FF radiation patterns are valid
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Figure 4.18: First 10 TEz approximated modes, Cross-Aperture, N = 165

only in the +z-direction. The plots in Figures 4.19 - 4.22 show this valid region by omitting

any field calculations in the −z-direction, or where |θ|> π/2.

Comparing the FF radiation pattern of the square aperture to the cross-shaped aperture,

it is apparent that the amount of energy output from the cross-shaped aperture is much less

than the amount output from the square aperture. This reduction in energy is an expected

result due to the reduction in physical cross-sectional area and the conservation of energy

principle [2].

Another noticeable difference between the two apertures’ FF radiation patterns is

reduction in side lobes in the cross-shaped aperture pattern. This reduction is attributed

to again the smaller physical cross-sectional area because it has been shown previously

that increasing the physical size of an aperture increases the amount of side lobes [2]. In

the cross-shaped aperture case, the dimensions are being reduced from the square aperture

meaning less side lobes are present in the FF radiation pattern.
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Another major difference between the patterns is the main lobe shape. The main lobe

of the FF radiation pattern of the square aperture shown in Figure 4.15 has a fairly narrow

shape with a FNBW of approximately 40◦. In contrast, the FF radiation pattern of the

cross-shaped aperture excited with a similar mode shown in Figure 4.19 exhibits a very wide

main lobe with a FNBW of approximately 60◦. This FNBW is expected because the original

dimensions for the aperture are formulated based on the need of a wider FNBW. Further

investigation is needed to determine which mode is optimal for the cross-shaped aperture.

In addition, the FF radiation plot for the lowest order TM mode in the cross-shaped aperture

is shown in Figure 4.20. However, the FF radiation pattern plot for the TM11 mode in the

square aperture is not generated due to its poor performance leaving no comparing plot for

Figure 4.20. In future work, it is still a possibility that a TM mode may produce the optimal

FF radiation pattern for the sparse reflector and thus will not be ruled out. However, for this

thesis, using a TM mode for exciting the cross-shaped aperture is not explored further.

Finally, the additional planar cuts of the FF radiation patterns for the cross-shaped

aperture are included here to show how the aperture performs in the blank regions between

the reflector arms. The pattern for the TE case shows a less directive pattern than the

φ = 0 cut, but still with more energy focused towards the center part of the reflector as

expected. However, there are added side lobes that are unexpected. These are attributed to

the smaller dimension of the aperture across the φ = π/4 planar cut. The TM case shows an

omnidirectional pattern which was unexpected and confirms that the lowest order TM mode

is not a good choice for exciting the cross-shaped aperture.

From these plots, a TE mode exciting the cross-shaped aperture appears to be the best

choice. However, more design iterations are needed to optimize the FF radiation pattern

of the cross-shaped aperture antenna for feeding the sparse reflector. In particular, the

cross-shaped aperture dimensions should be optimized with a particular TE or TM mode or

mode combination.
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Figure 4.19: φ = 0, 0 ≤ θ ≤ π/2 planar cut of FF radiation pattern, in dB, of cross-shaped
aperture excited by lowest order TEz mode
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Figure 4.20: φ = 0, 0 ≤ θ ≤ π/2 planar cut of FF radiation pattern, in dB, of cross-shaped
aperture excited by lowest order TMz mode
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Figure 4.21: φ = π/4, 0 ≤ θ ≤ π/2 planar cut of FF radiation pattern, dB, of cross-shaped
aperture excited by lowest order TEz mode
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Figure 4.22: φ = π/4, 0 ≤ θ ≤ π/2 planar cut of FF radiation pattern, in dB, of cross-shaped
aperture excited by lowest order TMz mode
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V. Discussion

In summary, this research has examined two electrically large, custom-shaped reflector

antennas: a rectangular shaped, spherically contoured reflector (spherical reflector), and a

cross-shaped, parabolically contoured reflector (sparse reflector). Both reflectors present a

new concept in antenna design because of their size, unconventional cross-sectional shape,

and their respective application. In particular, the spherical reflector antenna system is

intended to be a earth-based antenna for Geosynchronous (GEO) satellite communications

with offset feed beam steering, and the sparse reflector antenna system is intended to be

a foldable reflector for easier deployability in a space-based communications application.

Pursuing both of these reflector antenna concepts for this thesis was prompted by a

discontinuation in the spherical reflector antenna project.

This thesis presents a methodology for designing electrically large custom-shaped

reflector antennas based on well known published works. The methodology is systematic

and consistent for each reflector antenna except for one distinct procedure for each reflector.

These include a sky study for the spherical reflector and a baseline antenna design for the

sparse reflector. The need for an additional procedure for each reflector is attributed to the

difference in custom-shaping of each reflector and the difference in contour. However, the

general methodology is summarized as:

1. Geometrical analysis

2. Plane wave analysis

3. Feed antenna design

4. Feed antenna analysis

For the spherical reflector, procedures one and two listed above are applied. For the

sparse reflector, all procedures are applied. The sections that follow summarize the results

of each step in the methodology for each reflector antenna and provide conclusions based

on the findings.
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5.1 Geometrical Analysis

Analysis of the spherical reflector geometry shows the only degree of freedom is the

radius of curvature. This is because the height and width of the rectangular cross-section

are specified. In order to accommodate design changes in the simulation code, the known

dimensions are related to the radius of curvature. The chord length of a circle is analogous

to the known dimensions of the spherical reflector and thus the expression for the chord

length of a circle is used to relate the radius of curvature to the known dimensions. This

relationship is used in defining the spherical reflector in computer simulations for ray-tracing

and plane wave analysis.

The sparse reflector geometry has been predetermined for deployability and therefore

does not have any degrees of freedom. Geometrical analysis is required however, because

the sparse reflector has a complex cross-sectional shape that must be specified in computer

simulations from the field data generated in geometrical analysis. In particular, the parabolic

contour of the sparse reflector and the angles subtended by the sparse reflector are determined

from geometrical analysis. These field data are then used in performing ray-tracing and

plane wave analysis.

5.1.1 Ray-Tracing Procedure: Rectangular Shaped, Spherically Contoured Re-

flector.

The results from performing the ray-tracing for the spherical reflector illustrate the

formation of a caustic envelope. The caustic envelope formation is attributed to the inherent

spherical aberrations as described in [1]. However, using a radius of curvature that is 60.96

meters in length, determined from the later plane wave analysis, caused a relatively smaller

caustic to form as opposed to the caustic shown in Section 2.1 and [5]. Therefore, a complex

feeding structure, such as the dual Gregorian reflector system that feeds the Arecibo radio

astronomy antenna, can be avoided for the spherical reflector because the aberrations are

not as prominent. Finally, the ray-tracing procedure confirms that steering the main beam
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of the spherical reflector can be accomplished by moving the feeding structure due to the

symmetry of the spherical reflector.

5.1.2 Ray-Tracing Procedure: Cross-shaped, Parabolically Contoured Reflector

Geometry.

The ray-tracing procedure for the sparse reflector confirms that the focal point forms at

a distance of 80 meters from the apex of the reflector. In addition, the procedure confirms

that the feeding structure for the sparse reflector is best placed at the focal point which leads

to the conclusion that in order to steer the antenna beam, the sparse reflector and its feeding

structure must be moved in unison. Moving the feeding structure away from the focal point

will cause a reduction in the amount of energy received.

5.2 Plane Wave Analysis

Because the two reflectors examined in this thesis exhibit different contours, the feed

placement for each reflector is different. This dissimilarity between the two reflectors leads

to the use of different procedures for plane wave analysis. The methods are explained

previously in Section 3.2 and the conclusions from each follow. The results from the plane

wave analysis of each reflector provide field data used in the feeding structure design.

5.2.1 Rectangular Shaped, Spherically Contoured Reflector.

The general procedure for the spherical reflector plane wave analysis is to first,

propagate a plane wave towards the spherical reflector, and second, place an image plane

at the paraxial focus, or where the reflected energy is centered, to visualize the amplitude

distribution of the received energy. Two approaches are taken to calculate the amplitude

distribution at the paraxial focus: the Fourier transform method and the Fresnel-Kirchoff

Diffraction Integral (FKDI) method.

The Fourier transform method does not result in an accurate representation of the

amplitude distribution at the paraxial focus. It does not account for diffraction as the FKDI

method does. However, the Fourier transform method confirms that as the incident angle of
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the plane wave is shifted off-axis, the amplitude distribution at the paraxial focus shifts as

well. This shift confirms that steering the antenna can be accomplished from moving the

feeding structure.

The FKDI method shows a more accurate representation of the amplitude distribution

at the paraxial focus because the diffraction effects are modeled. The on-axis plane wave

shows an amplitude distribution with minimal energy spreading, but the spreading effect

becomes more noticeable as the plane wave angle of incidence shifts off-axis. To capture

the spreading energy, a feeding structure that is 10 meters by 10 meters will be used. Also,

the steering will be limited to ±15◦ in azimuth and ±5◦ in elevation.

5.2.2 Cross-shaped, Parabolically Contoured Reflector Geometry.

As stated earlier, the feed placement was determined to be the focal point of the sparse

reflector. Also, there are no inherent aberrations exhibited by the sparse reflector. Therefore,

the plane wave analysis for the sparse reflector is performed in the transmit mode as opposed

to the receive mode. This is a valid approach because of the reciprocity of antenna patterns

[2] [6]. Defining an analytical Far-Field (FF) radiation pattern for a feeding structure to

uniformly illuminate the sparse reflector is analogous to a plane wave incident upon the

sparse reflector and therefore, the overall FF radiation pattern is obtained.

The FF radiation pattern of the sparse reflector confirms that a “pencil beam” forms

as is typical for a parabolically contoured reflector. Also, its highest directivity is in the

boresight, or directly out in front of the reflector. However, the feeding structure for the

sparse reflector must direct energy more towards the arms of the sparse reflector and less

energy towards the blank areas between the arms. Ultimately, the performance of the sparse

reflector will be improved from the added directivity of the feeding structure because energy

will not be directed towards the blank areas between the reflector arms. Particularly, a higher

directivity and narrower FNBW will result and the sparse reflector performance will better

match the baseline antenna performance.
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5.3 Sky Study for the Rectangular, Spherically Contoured Reflector

Using publicly available Two Line Element (TLE) data from www.space-track.org and

Systems Tool Kit (STK) software from Analytical Graphics Inc. (AGI), the sky study is

performed [25]. In particular, all publicly available Geosynchronous (GEO) satellite data are

imported into STK and plotted to visualize the regions of the sky that the spherical reflector

must have line of sight for. In order to accommodate all GEO satellites in orbit over the

Continental United States (CONUS), a total of five spherical reflector stations across the

CONUS are needed. The placement of these stations varies in latitude and longitude, but

the more important variable is latitude. Figures 4.8 and 4.9 previously presented show the

relative latitudes for the stations.

5.4 Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector

Geometry

The design and simulation of the 50 meter diameter circular shaped, parabolically

contoured reflector antenna as a baseline for the sparse reflector is presented in Sections 3.4

and 4.4. The sparse reflector needs to have a directivity close to 41.43 dB, a First Null

Beam Width (FNBW) close to 0.4◦, and a front to back ratio around 55.92 dB in order to be

comparable to the baseline antenna system. From the FF radiation pattern plotted from the

plane wave analysis, the sparse reflector has a directivity of 50.58 dB, a FNBW of 0.8◦, and

a front to back ratio of 37.32 dB. These results show that the sparse reflector is comparable

to the baseline antenna system by these figures of merit except for a decrease in the front to

back ratio. These figures of merit are summarized in Table 5.1. However, the FF patterns of

the reflectors differ and thus the same performance cannot be expected from these antenna

systems.

The difference in directivities of the two antennas is attributed to the blockage that

occurs from the secondary reflector in the baseline Cassegrain antenna system. Adding the

secondary reflector more uniformly illuminates the primary reflector, but blocks incoming
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Table 5.1: Summary of results from the Plane Wave Analysis of sparse reflector and baseline
antenna simulation

Sparse
Reflector

Baseline
Antenna
(Analytic
Feed
Pattern)

Baseline
Antenna
(Cassegrain
system
with Horn
Feed)

Maximum
Directivity
(boresight)

50.58 dB 55.70 dB 41.43 dB

FNBW 0.8◦ 0.4◦ 0.4◦

Front to Back
Ratio

37.32 dB 77.03 dB 55.92 dB

signals, thus reducing the maximum directivity of the overall system. However, the aperture

efficiency increases from the uniform illumination of the primary reflector. The difference

in the front to back ratios is due to the diffraction of energy around the arms of the sparse

reflector. This diffraction causes an increased back lobe to form which then decreases the

ratio of energy directed towards the front and energy directed towards the back of sparse

reflector. The decrease in the front to back ratio is tolerable however and the sparse reflector

is expected to be able to perform well with an optimal feeding structure.

5.5 Feed Design for the Cross-shaped, Parabolically Contoured Reflector Geometry

From the methods and results presented in Sections 3.5 and 4.5, the use of a cross-

shaped aperture antenna is a feasible option for feeding the sparse reflector. The cross-shaped

aperture shows a reduction in output power as compared to a square aperture with similar

dimensions. The use of a different mode to excite the cross-shaped aperture may prove

feasible in future work to increase the output power. Higher order modes for the cross-shaped

aperture show higher concentrations of energy as compared to the lowest order modes used

in this thesis.
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Also, the FNBW of the cross-shaped aperture is much larger than the square aperture

due to the inverse Fourier relationship between the FF radiation pattern and the dimensions

of an antenna aperture. The larger FNBW will better illuminate the sparse reflector resulting

in an overall higher directivity of the antenna system.

5.6 Future Work

To further the work presented in this thesis, two research directions are of interest for

the sparse reflector. These include:

1. Further refining the cross-shaped aperture antenna and simulating it with the sparse
reflector.

2. Designing the phased array feeding structure and simulating it with the sparse reflector.

Further refinement of the cross-shaped aperture antenna includes exploring the use

of higher order modes to excite the aperture for feeding the sparse reflector, revising the

dimensions of the aperture to improve the FF radiation pattern to better direct energy

towards the arms of the sparse reflector, and exploring the usage of special materials such as

metamaterials and dielectrics to improve the FF radiation pattern.

Designing the phased array and refining it will be the newest focus for this project. The

benefits of a phased array are that:

1. The FF radiation pattern of the array may be altered by phasing the individual elements
of the array.

2. The array can be reconfigured to alter its performance.

3. The output power is much greater than an aperture antenna.

However, the design of a phased array feeding structure poses a new challenge if the

array size gets too large relative to wavelength. In particular, the array will have to be

analyzed in segments that are electrically smaller and the results from each segment will

then be combined into the overall result for the array.
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Appendix: MATLAB Code

A.1 Ray-Tracing Code for Rectangular Shaped, Spherically Contoured Reflector

1 % Housekeeping
2 clc;
3 clear all;
4 close all;
5

6 %% Ray−Tracing for Rectangular, Spherically contoured reflector
7

8 % User inputs
9 D.width = 1000; % Reflector width, ft

10 D.height = 300; % Reflector length, ft
11 D.R s = 2000; % Reflector Radius of curvature, ft
12 N = 10;
13

14 %% Calculations (origin wrt the center of curvature)
15

16 N w = N; % Number of rays across width of dish
17 N l = N; % Number of rays across length of dish
18

19 % Convert to meters
20 D.width = D.width*0.3048;
21 D.height = D.height*0.3048;
22 D.R s = D.R s*0.3048;
23

24 % Lay out grid for where each ray will be incident
25 D.theta = linspace(pi/2 + asin(−D.height/2/D.R s), pi/2 + ...
26 asin(D.height/2/D.R s),N l);
27 D.phi = linspace(pi+asin(−D.width/2/D.R s), ...
28 pi+asin(D.width/2/D.R s),N w);
29 [D.THETA,D.PHI] = meshgrid(D.theta,D.phi);
30 [D.X,D.Y,D.Z] = sph2cart(D.PHI,D.THETA−pi/2,D.R s);
31

32 % Generate geometry
33 figure; hold on
34 % Change camera view to slightly above reflector
35 view([D.R s,D.R s/2,D.R s/2]);
36 % Plot reflector
37 ref = surf(D.X,D.Y,D.Z);
38 % Make it better looking
39 set(ref,'FaceColor',[0.41,0.41,0.41],'Edgelighting','gouraud');
40 % Plot radius of curvature line and label it
41 quiver3(0,0,0,−D.R s,0,0,1);
42 text(−D.R s/2,0,0,'\leftarrow Radius of Curvature = 5000 ft.',...
43 'HorizontalAlignment','left');
44 % Label origin
45 text(0,0,0,'O \rightarrow ','HorizontalAlignment','right');
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46 % Plot z axis and label it
47 quiver3(0,0,0,D.width/2,0,0);
48 text(D.height,0,0,'X','HorizontalAlignment','right');
49 % Plot x axis and label it
50 quiver3(0,0,0,0,0,D.height/2);
51 text(0,0,D.height/2,'Z','HorizontalAlignment','right');
52 % Plot y axis and label it
53 quiver3(0,0,0,0,D.height/2,0);
54 text(0,D.height/2,0,'Y','HorizontalAlignment','right');
55 axis equal
56 axis off
57 axis vis3d
58 hold off
59

60 % This plots the center cross section of the RIMSHOT
61 % reflector (XZ plane) Note: The use of X is still the
62 % x axis in these plots, but the use of Z
63 % is the y axis in these plots.
64 THETA = reshape(D.THETA,1,size(D.THETA,1)*size(D.THETA,2));
65 PHI = reshape(D.PHI,1,size(D.PHI,1)*size(D.PHI,2));
66 % Draw 2D geometry
67 [D.twoDX,D.twoDY,D.twoDZ] = sph2cart(pi,D.theta − pi/2,D.R s);
68 figure;
69 hold on
70 plot(D.twoDX,D.twoDZ);
71

72 % Calculate surface normals
73 N = zeros(3,size(D.THETA,1)*size(D.THETA,2));
74 N(1,:) = D.R s.*sin(THETA).*cos(PHI); %x
75 N(2,:) = D.R s.*sin(THETA).*sin(PHI); %y
76 N(3,:) = D.R s.*cos(THETA); %z
77

78 % % Plot surface normals (XZ plane) for i = 5:10:N lˆ2
79 % quiver(0,0,N(1,i),N(3,i),1,'r','MaxHeadSize',0.02);
80 % end
81

82 % Calculate incident rays
83 I = zeros(3,size(D.THETA,1)*size(D.THETA,2));
84 I(1,:) = D.R s.*sin(THETA).*cos(PHI);
85 Ipos = zeros(3,size(D.THETA,1)*size(D.THETA,2));
86 Ipos(2,:) = D.R s.*sin(PHI); %y
87 Ipos(3,:) = D.R s.*cos(THETA); %z
88

89 % Plot incident rays (XZ plane)
90 for i = 5:10:N lˆ2
91 quiver(Ipos(1,i),Ipos(3,i),I(1,i),I(3,i),1, ...
92 'b','MaxHeadSize',0.02);
93 end
94

95 % Calculate reflected rays
96

97 Nhat = N./(ones(3,1)*sqrt(sum(N.ˆ2,1)));
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98

99 % Incoming wave vector (unit vector)
100 D0 = [cos(pi)*sin(pi/2), ...
101 sin(pi)*sin(pi/2), ...
102 cos(pi/2)];
103

104 R = D0'*ones(1,size(N,2)) − ...
105 ([2;2;2]*sum((D0'*ones(1,size(N,2))).*Nhat)).*Nhat;
106

107 R = 1000.*R;
108

109 Rpos = zeros(3,size(D.THETA,1)*size(D.THETA,2));
110 Rpos(1,:) = D.R s.*sin(THETA).*cos(PHI); %x
111 Rpos(2,:) = D.R s.*sin(THETA).*sin(PHI); %y
112 Rpos(3,:) = D.R s.*cos(THETA); %z
113

114 % Plot reflected rays
115 for i = 5:10:N lˆ2
116 quiver(Rpos(1,i),Rpos(3,i),R(1,i),R(3,i),1, ...
117 'k','MaxHeadSize',0.02);
118 end
119 xlabel('Meters');
120 ylabel('Meters');
121 set(gca,'FontSize',15);
122 hold off
123

124 %% Plot 3D GO
125

126 % Generate geometry
127 figure; hold on
128 % Change camera view to slightly above reflector
129 view([D.R s,D.R s/2,D.R s/2]);
130 % Plot reflector
131 ref = surf(D.X,D.Y,D.Z);
132 % Make it pretty
133 set(ref,'FaceColor',[0.41,0.41,0.41],'Edgelighting','gouraud');
134 % Label origin
135 text(0,0,0,'O \rightarrow ','HorizontalAlignment','right');
136 % Plot z axis and label it
137 quiver3(0,0,0,D.width/2,0,0);
138 text(D.height,0,0,'Z','HorizontalAlignment','right');
139 % Plot x axis and label it
140 quiver3(0,0,0,0,0,D.height/2);
141 text(0,0,D.height/2,'X','HorizontalAlignment','right');
142 % Plot y axis and label it
143 quiver3(0,0,0,0,D.height/2,0);
144 text(0,D.height/2,0,'Y','HorizontalAlignment','right');
145 axis equal
146 axis off
147 %axis vis3d
148

149 % Plot surface normals for i = 1:size(N,2)
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150 % ...
quiver3(0,0,0,N(1,i),N(2,i),N(3,i),1,'r','MaxHeadSize',0.02);

151 % end
152

153 %Plot incident rays
154 for i = 1:size(I,2)
155 quiver3(Ipos(1,i)+(3*I(1,i)/4),Ipos(2,i),Ipos(3,i), ...
156 I(1,i),I(2,i),I(3,i),0.25,'b','MaxHeadSize',0.02);
157 end
158

159 % Plot reflected rays
160 for i = 1:size(N,2)
161 quiver3(Rpos(1,i),Rpos(2,i),Rpos(3,i),R(1,i),R(2,i), ...
162 R(3,i),1,'k','MaxHeadSize',0.02);
163 end
164

165 hold off

A.2 Ray-Tracing Code for Cross-Shaped, Parabolically Contoured Reflector

1 %Housekeeping
2 clear;
3 close all;
4 clc;
5

6 % Ray−Tracing for Cross−shaped, Parabolically Contoured Reflector
7

8 %% User Inputs
9

10 % Sampling
11 Ns = 12; % Number of ray samples across each dimension
12

13 % Dimensions
14 D = 150; % Aperture diameter, meters
15 f = 80; % Focus of parabola, meters
16 w = 6.74; % Arm width, meters
17 L = 71.63; % Arm length, meters
18

19 %% Calculations
20

21 % Standard equation: y = axˆ2, a = 1/4f
22 a = 1/(4*f);
23

24 % Define y
25 y = −D/2:0.1:D/2;
26

27 % Equation
28 x = a*y.ˆ2−100;
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29

30 % Plot 2D geometry
31 figure;
32 hold on
33 plot(x,y);
34 axis equal
35 xlabel('Meters','fontsize',12);
36 ylabel('Meters','fontsize',12);
37

38 % Calculate and Plot Incident rays
39 I = zeros(2,Ns);
40 Ipos = zeros(2,Ns);
41 for i = 1:Ns
42 I(1,i) = x(i*round(length(x)/Ns));
43 Ipos(2,i) = y(i*round(length(x)/Ns));
44 quiver(Ipos(1,i),Ipos(2,i),I(1,i),I(2,i),1,'b', ...
45 'MaxHeadSize',0.02);
46 end
47

48 % Calculate and Plot Surface Normals
49 N = zeros(2,Ns);
50 Npos = zeros(2,Ns);
51 Npos(1,:) = I(1,:);
52 Npos(2,:) = Ipos(2,:);
53 for i = 1:Ns
54

55 % Calculate derivative at this point
56 slope = 2*a*Npos(2,i);
57

58 % Calculate second point to make a vector
59 Px = 1;
60 Py = slope*Px;
61

62 % Make surface normal
63 N(2,i) = Px*cos(pi/2)−Py*sin(pi/2);
64 N(1,i) = Px*sin(pi/2)+Py*cos(pi/2);
65 quiver(Npos(1,i),Npos(2,i),N(1,i),N(2,i),10,'r', ...
66 'MaxHeadSize',0.02);
67 end
68

69 % Reflected Rays
70 R = zeros(2,Ns);
71 Rpos = zeros(2,Ns);
72 Rpos(1,:) = I(1,:);
73 Rpos(2,:) = Ipos(2,:);
74 for i = 1:Ns
75 % Calculate angle between the incident ray and the
76 % surface normal
77 theta = pi − acos(dot(I(:,i),N(:,i))/...
78 (sqrt(I(1,i)ˆ2+I(2,i)ˆ2)*sqrt(N(1,i)ˆ2+N(2,i)ˆ2)));
79

80 % Calculate Reflected ray
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81 if i < round(Ns/2) % Flip over the axis of symmetry
82 R(1,i) = N(1,i)*cos(theta)−N(2,i)*sin(theta);
83 R(2,i) = N(1,i)*sin(theta)+N(2,i)*cos(theta);
84 else
85 R(1,i) = N(1,i)*cos(−theta)−N(2,i)*sin(−theta);
86 R(2,i) = N(1,i)*sin(−theta)+N(2,i)*cos(−theta);
87 end
88

89 quiver(Rpos(1,i),Rpos(2,i),R(1,i),R(2,i),100,'k', ...
90 'MaxHeadSize',0.02);
91 end
92

93 % Plot the focus point
94 scatter(−20,0);
95

96 %% Cross section Geometry
97

98 % New Way, uses surface plot instead
99 x1 = linspace(−D/2,D/2,256);

100 y1 = linspace(−w/2,w/2,8);
101 x2 = linspace(−w/2,w/2,8);
102 y2 = linspace(−D/2,D/2,256);
103

104 [X1,Y1] = meshgrid(x1,y1);
105 [X2,Y2] = meshgrid(x2,y2);
106 Z1 = a*X1.ˆ2 + a*Y1.ˆ2;
107 Z2 = a*X2.ˆ2 + a*Y2.ˆ2;
108

109 % To match dimensions, the matrices were found to be
110 % transposed incorrectly
111 X1 = X1';
112 Y1 = Y1';
113 Z1 = Z1';
114

115 %% Surface plot
116

117 figure;
118 hold on
119 surf(X1,Y1,Z1);
120 surf(X2,Y2,Z2);
121 axis equal
122 xlabel('Meters','fontsize',12);
123 ylabel('Meters','fontsize',12);
124 zlabel('Meters','fontsize',12);
125

126 % Plot rays for 3D geometry
127 % Calculate and Plot Incident rays for each set of arms
128 % (sections 1 and 2)
129 I1 = zeros(3,round(size(X1,1)*size(X1,2)/5));
130 I1(3,:) = −100*ones(1,round(size(X1,1)*size(X1,2)/5));
131 I2 = zeros(3,round(size(X2,1)*size(X2,2)/5));
132 I2(3,:) = −100*ones(1,round(size(X1,1)*size(X1,2)/5));
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133 X1 = reshape(X1,1,size(X1,1)*size(X1,2));
134 Y1 = reshape(Y1,1,size(Y1,1)*size(Y1,2));
135 Z1 = reshape(Z1,1,size(Z1,1)*size(Z1,2));
136 X2 = reshape(X2,1,size(X2,1)*size(X2,2));
137 Y2 = reshape(Y2,1,size(Y2,1)*size(Y2,2));
138 Z2 = reshape(Z2,1,size(Z2,1)*size(Z2,2));
139 for i = 1:size(I1,2)
140 % Only Plot a subset of the overall sampled surface
141 if (10*i) < length(X1)
142 Ipos1(1,i) = X1(10*i);
143 Ipos1(2,i) = Y1(10*i);
144 Ipos1(3,i) = Z1(10*i)+100;
145 Ipos2(1,i) = X2(10*i);
146 Ipos2(2,i) = Y2(10*i);
147 Ipos2(3,i) = Z2(10*i)+100;
148 end
149 if i ≤ size(Ipos1,2)
150 quiver3(Ipos1(1,i),Ipos1(2,i),Ipos1(3,i),I1(1,i), ...
151 I1(2,i),I1(3,i),1,'b','MaxHeadSize',0.02);
152 quiver3(Ipos2(1,i),Ipos2(2,i),Ipos2(3,i),I2(1,i), ...
153 I2(2,i),I2(3,i),1,'b','MaxHeadSize',0.02);
154 end
155 end
156

157 % Surface Normals
158 N1 = zeros(3,round(size(X1,1)*size(X1,2)/5));
159 N2 = zeros(3,round(size(X2,1)*size(X2,2)/5));
160 for i = 1:size(I1,2)
161 % Only Plot a subset of the overall sampled surface
162 if (10*i) < length(X1)
163 Npos1(1,i) = X1(10*i);
164 Npos1(2,i) = Y1(10*i);
165 Npos1(3,i) = Z1(10*i);
166 Npos2(1,i) = X2(10*i);
167 Npos2(2,i) = Y2(10*i);
168 Npos2(3,i) = Z2(10*i);
169 end
170 if i ≤ size(Ipos1,2)
171 % Calculate derivative at this point
172 slope1x = 2*a*Npos1(1,i);
173 slope1y = 2*a*Npos1(2,i);
174 slope2x = 2*a*Npos2(1,i);
175 slope2y = 2*a*Npos2(2,i);
176

177 % Calculate second point to make a vector
178 Px = 1;
179 Py = 0;
180 Pz1 = slope1x*Px + slope1y*Py;
181 Pz2 = slope2x*Py + slope2y*Px;
182

183 % Make surface normal
184 N1(1,i) = Px*cos(pi/2)−Pz1*sin(pi/2);
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185 N1(2,i) = Py;
186 N1(3,i) = Px*sin(pi/2)+Pz1*cos(pi/2);
187 N2(1,i) = Py;
188 N2(2,i) = Px*cos(pi/2)−Pz2*sin(pi/2);
189 N2(3,i) = Px*sin(pi/2)+Pz2*cos(pi/2);
190

191 % Plot the surface normals
192 quiver3(Npos1(1,i),Npos1(2,i),Npos1(3,i),N1(1,i), ...
193 N1(2,i),N1(3,i),5,'r','MaxHeadSize',0.02);
194 quiver3(Npos2(1,i),Npos2(2,i),Npos2(3,i),N2(1,i), ...
195 N2(2,i),N2(3,i),5,'r','MaxHeadSize',0.02);
196 end
197 end
198

199 % Reflected Rays
200 R1 = zeros(3,round(size(X1,1)*size(X1,2)/5));
201 R2 = zeros(3,round(size(X2,1)*size(X2,2)/5));
202 for i = 1:size(I1,2)
203 % Only Plot a subset of the overall sampled surface
204 if (10*i) < length(X1)
205 Rpos1(1,i) = X1(10*i);
206 Rpos1(2,i) = Y1(10*i);
207 Rpos1(3,i) = Z1(10*i);
208 Rpos2(1,i) = X2(10*i);
209 Rpos2(2,i) = Y2(10*i);
210 Rpos2(3,i) = Z2(10*i);
211 end
212 if i ≤ size(Ipos1,2)
213 % Calculate angle between the incident ray and the
214 % surface normal
215 theta1 = pi − acos(dot(I1(:,i),N1(:,i))/ ...
216 (sqrt(I1(1,i)ˆ2+I1(2,i)ˆ2+I1(3,i)ˆ2)* ...
217 sqrt(N1(1,i)ˆ2+N1(2,i)ˆ2+N1(3,i)ˆ2)));
218 theta2 = pi − acos(dot(I2(:,i),N2(:,i))/ ...
219 (sqrt(I2(1,i)ˆ2+I2(2,i)ˆ2+I2(3,i)ˆ2)* ...
220 sqrt(N2(1,i)ˆ2+N2(2,i)ˆ2+N2(3,i)ˆ2)));
221

222 % Calculate Reflected rays
223 if Rpos1(1,i) > 0 % Flip over the axis of symmetry
224 R1(1,i) = N1(1,i)*cos(theta1)−N1(3,i)*sin(theta1);
225 R1(2,i) = N1(2,i);
226 R1(3,i) = N1(1,i)*sin(theta1)+N1(3,i)*cos(theta1);
227 else
228 R1(1,i) = N1(1,i)*cos(−theta1)−N1(3,i)*sin(−theta1);
229 R1(2,i) = N1(2,i);
230 R1(3,i) = N1(1,i)*sin(−theta1)+N1(3,i)*cos(−theta1);
231 end
232 if Rpos2(2,i) > 0 % Flip over the axis of symmetry
233 R2(1,i) = N2(1,i);
234 R2(2,i) = N2(2,i)*cos(theta2)−N2(3,i)*sin(theta2);
235 R2(3,i) = N2(2,i)*sin(theta2)+N2(3,i)*cos(theta2);
236 else
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237 R2(1,i) = N2(1,i);
238 R2(2,i) = N2(2,i)*cos(−theta2)−N2(3,i)*sin(−theta2);
239 R2(3,i) = N2(2,i)*sin(−theta2)+N2(3,i)*cos(−theta2);
240 end
241

242 % Plot the surface normals
243 quiver3(Rpos1(1,i),Rpos1(2,i),Rpos1(3,i),R1(1,i), ...
244 R1(2,i),R1(3,i),100,'k','MaxHeadSize',0.02);
245 quiver3(Rpos2(1,i),Rpos2(2,i),Rpos2(3,i),R2(1,i), ...
246 R2(2,i),R2(3,i),100,'k','MaxHeadSize',0.02);
247 end
248 end

A.3 FF Radiation Pattern Computation Code Using FD Eigenmode Analysis to

Determine Equivalent Sources

1 % NOTE: This code only works for equal width/length
2 % dimensions with equal numbers of discrete steps.
3

4 % Housekeeping
5 clear;
6 close all;
7 clc;
8

9 %% Inputs
10

11 fmin = 1e9; % Operational frequency minimum, Hz
12 fmax = 2e9; % Operational frequency maximum, Hz
13 HPBW = 100.459; % Desired Maximum Half−Power
14 % Beamwidth, degrees
15 A = 1; % Source strength, volts/meter
16 N = 165; % Grid width/length number of samples
17 flag = 1; % Flag to introduce boundaries or not
18 % (1=boundaries on, 0 = off)
19 mode = 'TM'; % Which modes to explore, TM or TE
20

21 %% Constants
22

23 % Permittivity of Free Space,
24 % (secondsˆ4*Amperesˆ2)/(metersˆ3*kilograms)
25 epsilon = 8.85418782e−12;
26

27 % Permeability of Free Space, (Volts*Seconds)/(Amperes*meters)
28 mu = (4*pi)*1e−7;
29

30 %% Calculations
31
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32 % Medium calculations
33 % Speed of light, meters/second
34 c = 1/sqrt(epsilon*mu);
35 % Intrinsic impedance, ohms
36 eta = sqrt(mu/epsilon);
37

38 % Frequency, wavelength, wave number calculations
39 % Vector of frequencies, Hz
40 f = fmin:(0.1e9):fmax;
41 % Vector of frequencies, rad/s
42 omega = 2*pi.*f;
43 % Vector of wavelengths, meters
44 lambda = c./f;
45 % Vector of wave numbers, rad/m
46 k = 2*pi./lambda;
47

48 % Aperture dimensions calculations (Square aperture,
49 % to later have additional boundaries added in to
50 % change the FF pattern)
51 a = (lambda./sind(HPBW/2));
52 b = a;
53

54 %% Grid Generation
55

56 % Sampling the aperture
57 x = zeros(length(f),N+1);
58 y = zeros(length(f),N+1);
59 for i = 1:length(f)
60 % Vector of x spatial steps, meters
61 x(i,:) = 0:a(i)/N:a(i);
62 % Vector of y spatial steps, meters
63 y(i,:) = 0:b(i)/N:b(i);
64 end
65

66 % Grid spacing
67 dx = mean(diff(x,[],2),2); % spatial step size, meters
68

69 %% Solve for cutoff frequencies of aperture
70

71 % Flag to tell numgrid to make cross−shaped aperture
72 if flag == 1
73 R = 'K';
74 u = (lambda./sind(6.18/2));
75

76 % Fraction of the width/length to include (all else excluded)
77 frac = mean(a./u);
78 else
79 R = 'S';
80 frac = 1;
81 end
82

83 % Grid Generation
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84 G = numgrid(R,N,frac);
85

86 % Create Laplacian Matrix
87 L = delsq(G);
88

89 % Apply normal derivative condition for TE modes
90 if strcmp(mode,'TE')
91 % Edges and cross−shape
92 if flag == 1
93 % First corner
94 ind1 = find(G(:,2),0,1,'first');
95 % Second corner
96 ind1 = [ind1 find(G(:,2),0,1,'last')];
97 corners = G(ind1,2);
98 % All other outer corners
99 corners = [corners G(ind1,N−1) G(2,ind1).' ...

G(N−1,ind1).'];
100 % Inner corners of cross
101 corners = [corners G(ind1,ind1)];
102 % Top most boundary
103 edges = G(2,ind1(1)+1:ind1(2)−1);
104 % Bottom most boundary
105 edges = [edges G(N−1,ind1(1)+1:ind1(2)−1)];
106 % Left most boundary
107 edges = [edges G(ind1(1)+1:ind1(2)−1,2).'];
108 % Right most boundary
109 edges = [edges G(ind1(1)+1:ind1(2)−1,N−1).'];
110 % Top left cross boundary (horizontal)
111 edges = [edges G(ind1(1),3:ind1(1)−1)];
112 % Bottom left cross boundary (horizontal)
113 edges = [edges G(ind1(2),3:ind1(1)−1)];
114 % Top Right cross boundary (horizontal)
115 edges = [edges G(ind1(1),ind1(2)+1:N−2)];
116 % Bottom Right cross boundary (horizontal)
117 edges = [edges G(ind1(2),ind1(2)+1:N−2)];
118 % Top left cross boundary (vertical)
119 edges = [edges G(3:ind1(1)−1,ind1(1)).'];
120 % Top Right cross boundary (vertical)
121 edges = [edges G(3:ind1(1)−1,ind1(2)).'];
122 % Bottom left cross boundary (vertical)
123 edges = [edges G(ind1(2)+1:N−2,ind1(1)).'];
124 % Bottom right cross boundary (vertical)
125 edges = [edges G(ind1(2)+1:N−2,ind1(2)).'];
126 for i = 1:(size(corners,1)*size(corners,2))
127 L(corners(i),corners(i)) = ...

2*L(corners(i),corners(i))/4;
128 end
129 for i = 1:length(edges)
130 L(edges(i),edges(i)) = 3*L(edges(i),edges(i))/4;
131 end
132 % Edges only
133 else
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134 % diagonal index for four corners
135 idx1 = [1 N−2 (N−2)ˆ2−N+3 (N−2)ˆ2];
136 % diagonal index for the sides
137 idx2 = [2:(N−3) ((N−2)ˆ2−N+4):((N−2)ˆ2−1)];
138 % add index for the top
139 idx2 = [idx2 (N−1):N−2:((N−2)ˆ2−N+2)];
140 % add index for the bottom
141 idx2 = [idx2 (2*N−4):N−2:((N−2)ˆ2−1)];
142 for i = 1:length(idx1)
143 L(idx1(i),idx1(i)) = 2*L(idx1(i),idx1(i))/4;
144 end
145 for i = 1:length(idx2)
146 L(idx2(i),idx2(i)) = 3*L(idx2(i),idx2(i))/4;
147 end
148 end
149 end
150

151 % Calculate the Eigenvalues of the Laplacian Operator Matrix
152 [D,E] = eigs(−L,[],10,'sm');
153

154 % Calculate the cutoff frequencies from the eigenvalues
155 j = 1;
156 for i = 1:size(E,1)
157 f(i,:) = (1./(2*pi.*dx)).*sqrt(−E(i,j)/(mu*epsilon));
158 j = j + 1;
159 end
160

161 % Sort modes
162 f = sort(f);
163

164 % Only calculate analytical cutoff frequencies for square
165 % apertures
166 if flag == 0
167 if strcmp(mode,'TE')
168 % Analytical Cutoff frequencies
169 m = 0:4;
170 n = 0:4;
171 f an = zeros(length(m),length(n),length(a));
172 for o = 1:length(a)
173 for i = 1:5
174 for j = 1:5
175 f an(i,j,o) = ...

(1/(2*pi*sqrt(mu*epsilon)))* ...
176 sqrt(((m(i)*pi)/a(o)).ˆ2+...
177 ((n(j)*pi)/b(o)).ˆ2);
178 end
179 end
180 end
181 else
182 % Analytical Cutoff frequencies
183 m = 1:5;
184 n = 1:5;
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185 f an = zeros(length(m),length(n),length(a));
186 for o = 1:length(a)
187 for i = 1:5
188 for j = 1:5
189 f an(i,j,o) = ...

(1/(2*pi*sqrt(mu*epsilon)))* ...
190 sqrt(((m(i)*pi)/a(o)).ˆ2+...
191 ((n(j)*pi)/b(o)).ˆ2);
192 end
193 end
194 end
195 end
196

197 % reshape and sort data in ascending order. This order
198 % corresponds to how to count the Transverse modes.
199 % Store the indexes to indicate which modes are which.
200 % Grab only modes for one set of dimensions, they will
201 % count the same way with any set of dimensions (it's the
202 % proportions that matter)
203 f an sort(:,:) = f an(:,:,1);
204

205 % Sort them, store the indexes for counting
206 [f an sort,I] = ...
207 sort(reshape(f an sort,1,size(f an sort,1)*...
208 size(f an sort,2)));
209

210 % Get the indexes for counting
211 [I,J]= ind2sub(size(f an(:,:,1)),I);
212 end
213

214 % Check numerical results against analytical results
215 % Loop over each set of dimensions
216 for o = 1:length(a)
217 string = ...
218 sprintf('For Aperture Dimensions: a = %f, b = ...
219 %f\n',a(o),b(o));
220 disp(string);
221 % Loop over calculated numerical modes
222 for i = 1:size(f,1)
223 if flag == 0
224 if strcmp(mode,'TE')
225 s num = sprintf('TE %i %i mode numerical:...
226 %g\n', m(I(i)),n(J(i)),f(i,o));
227 s an = sprintf('TE %i %i mode analytical:...
228 %g\n', m(I(i)),n(J(i)),f an(I(i),J(i),o));
229 % Percent error
230 s error = sprintf('TE %i %i mode Percent ...
231 error: %g%%\n',m(I(i)), n(J(i)),abs(100*...
232 (f an(I(i),J(i),o)−f(i,o))/f an(I(i),J(i),o)));
233 else
234 s num = sprintf('TM %i %i mode numerical:...
235 %g\n', I(i),J(i),f(i,o));
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236 s an = sprintf('TM %i %i mode analytical:...
237 %g\n', I(i),J(i),f an(I(i),J(i),o));
238 % Percent errror
239 s error = sprintf('TM %i %i mode Percent ...
240 error: %g%%\n',I(i), J(i),abs(100*...
241 (f an(I(i),J(i),o)−f(i,o))/f an(I(i),J(i),o)));
242 end
243 disp(s num);
244 disp(s an);
245 disp(s error);
246 else
247 s num = sprintf('Cutoff Frequency = %g\n',f(i,o));
248 disp(s num);
249 end
250

251 disp('−−−−−−−−−−−−−−−−−−−−');
252 end
253 end
254

255 %% Plot modes
256

257 % Loop over the different aperture dimensions
258 Z = zeros(size(G));
259

260 % Sort the Eigenvectors and eigenvalues
261 [D,E] = sortem(D,E);
262

263 for i = 1:1%size(f,2)
264

265 figure;
266

267 % Loop for each eigenvalue (mode distribution)
268 for o = 1:size(f,1)
269 subplot(2,5,o);
270

271 % Find indexes for where aperture resides
272 P = find(G , 0);
273

274 % Calculate the distribution
275 temp = E(o,o).*D(:,o);
276

277 % Layout distribution
278 Z(P) = temp;%reshape(temp,N−2,N−2);
279

280 % Plot the distribution
281 pcolor(abs(Z));
282 shading flat
283 set(gca,'YDir','normal');
284 string = sprintf('Cutoff frequency = %0.3f ...

GHz',f(o,i)*10ˆ(−9));
285 xlabel(string);
286 end
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287 string = sprintf('Aperture Dimensions: a = ...
288 %0.3f m, b = %0.3f m',a(i),b(i));
289 mtit(string);
290 end
291

292 %% Post−Processing
293

294 % NOTE: for TE case, the TE00 mode is not valid,
295 % so move up a mode!!!
296

297 temp = E(1,1).*D(:,1);
298 Z(P) = temp;
299

300 % Which aperture to use as the input
301 ap num = 1;
302 % Observation phi angle, radians
303 phi = 0:(pi/180):(2*pi);
304 % Observation theta angles, radians
305 theta = −pi/2:(pi/180):pi/2;
306 % Coefficient for nine point integration rule
307 C = 4*dx(ap num)ˆ2;
308 % Weights for nine point integration rule
309 wq = [1/36, 1/9, 1/36, 1/9, 4/9, 1/9, 1/36, 1/9, 1/36];
310 % Far−Field Distance, meters
311 r = 4*a(ap num)ˆ2/lambda(ap num);
312

313 % Allocate space for run time vector
314 t = zeros(1,length(theta));
315

316 if flag == 1
317 % NOTE: for Brevity, this is hard coded for a grid size
318 % of 165. Later revisions will make it more robust
319 % Calculate Center points
320 Center = [find(G(:,3),0,1,'first')+1,3];
321 len = length(Center(2):2:163);
322 Center = [Center(1)*ones(1,len); ...
323 3:2:163];
324 for i = 1:3
325 Center = [Center(1,:) ...

(Center(1,i*len)+2)*ones(1,len); ...
326 Center(2,:) 3:2:163];
327 end
328 Center = [Center(1,:) Center(2,:); ...
329 Center(2,:) Center(1,:)];
330 Center = sub2ind(size(Z),Center(1,:),Center(2,:));
331 else
332 % Square aperture
333 Center = [3,3];
334 len = length(Center(2):2:163);
335 Center = [Center(1)*ones(1,len); ...
336 3:2:163];
337 for i = 1:len−1
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338 Center = [Center(1,:) ...
(Center(1,i*len)+2)*ones(1,len); ...

339 Center(2,:) 3:2:163];
340 end
341 Center = sub2ind(size(Z),Center(1,:),Center(2,:));
342 end
343

344 % TE modes
345 if strcmp(mode,'TE')
346

347 Ex = zeros(size(Z));
348 Ey = zeros(size(Z));
349 % Calculate tangential field components
350 for i = 1:length(P)
351 [temp1,temp2] = ind2sub(size(Z),P(i));
352 Ex(temp1,temp2) = (Z(temp1 + 1,temp2) −...
353 Z(temp1 − 1,temp2))/(1i*2*omega(ap num)*...
354 epsilon*dx(ap num));
355 Ey(temp1,temp2) = −(Z(temp1,temp2 + 1) − ...
356 Z(temp1,temp2 − 1))/(1i*2*omega(ap num)*...
357 epsilon*dx(ap num));
358 end
359

360 % Initialize FF variables
361 Lth = zeros(length(theta),length(phi));
362 Lph = zeros(length(theta),length(phi));
363

364 % Loop over far field observations
365 for j = 1:length(theta)
366

367 %Update run time to user
368 if j > 1 % All other iterations
369 t sofar = sum(t(1:(j−1)));
370 t est = (t sofar*length(theta)/(j−1)−t sofar)/60;
371 fprintf('Theta %d of %d, %.02f minutes ...
372 remaining\n', j,length(theta),t est);
373 else % First Iteration
374 fprintf('Theta %d of %d\n',j,length(theta));
375 end
376

377 tic
378

379 for o = 1:length(phi)
380

381 sumth = 0;
382 sumph = 0;
383

384 % Loop over aperture (subdomains)
385 for i = 1:length(Center)
386

387 tempth = 0;
388 tempph = 0;
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389

390 [p1,p2] = ind2sub(size(Z),Center(i));
391

392 % Calculate Current Subdomain
393 sub = [ p1 + 1, p2 − 1; p1 + 1, p2; p1 + 1, ...
394 p2 + 1; p1 , p2 − 1; p1 , p2; p1,...
395 p2 + 1; p1 − 1, p2 − 1; p1 − 1, p2; ...
396 p1 − 1, p2 + 1];
397 sub lin = sub2ind(size(Z),sub(:,1),sub(:,2));
398

399 % Loop over current subdomain
400 for q = 1:9
401

402 % Calculate exponential for integral
403 ex = exp(−1i*k(ap num) ...
404 *((x(ap num,sub(q,2))−a(ap num)/2)*...
405 sin(theta(j))*cos(phi(o)) + ...
406 (y(ap num,sub(q,1))−a(ap num)/2)*...
407 sin(theta(j))*sin(phi(o))));
408

409 % L Theta
410 tempth = tempth + wq(q)*ex*...
411 (−Ey(sub lin(q))*cos(theta(j))*...
412 cos(phi(o)) + −Ex(sub lin(q))*...
413 cos(theta(j))*sin(phi(o)));
414

415 % L Phi
416 tempph = tempph + wq(q)*ex*...
417 (Ey(sub lin(q))*sin(phi(o)) + ...
418 −Ex(sub lin(q))*cos(phi(o)));
419

420 end
421 sumth = sumth + C*tempth;
422 sumph = sumph + C*tempph;
423 end
424

425 Lth(j,o) = sumth;
426 Lph(j,o) = sumph;
427 end
428

429 % Time Keeping
430 t(j) = toc;
431 end
432

433 % Calculate FF radiation pattern
434 Eth = (−1i*k(ap num)*exp(−1i*k(ap num)*r).*Lph)./(4*pi*r);
435 Eph = (1i*k(ap num)*exp(−1i*k(ap num)*r).*Lth)./(4*pi*r);
436

437 Eff = sqrt(Eth.*conj(Eth) + Eph.*conj(Eph));
438 Eff db = 20*log10(Eff);
439

440 % Plot FF pattern
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441 figure;
442 B = find(theta < 0);
443 theta(B) = theta(B) + 2*pi;
444 polar2(theta,Eff db.');
445 xlabel('FF radiation pattern, dB','FontSize',18);
446

447 else % TM modes
448

449 Hx = zeros(size(Z));
450 Hy = zeros(size(Z));
451 % Calculate the Tangential field components
452 for i = 1:length(P)
453 [temp1,temp2] = ind2sub(size(Z),P(i));
454 Hx(temp1,temp2) = −(Z(temp1 + 1,temp2) −...
455 Z(temp1 − 1,temp2))/(1i*2*omega(ap num)*...
456 mu*dx(ap num));
457 Hy(temp1,temp2) = (Z(temp1,temp2 + 1) − ...
458 Z(temp1,temp2 − 1))/(1i*2*omega(ap num)*...
459 mu*dx(ap num));
460 end
461

462 % Initialize FF variables
463 Nth = zeros(length(theta),length(phi));
464 Nph = zeros(length(theta),length(phi));
465

466 % Loop over far field observations
467 for j = 1:length(theta)
468

469 %Update run time to user
470 if j > 1 % All other iterations
471 t sofar = sum(t(1:(j−1)));
472 t est = (t sofar*length(theta)/(j−1)−t sofar)/60;
473 fprintf('Theta %d of %d, %.02f minutes...
474 remaining\n',j,length(theta),t est);
475 else % First Iteration
476 fprintf('Theta %d of %d\n',j,length(theta));
477 end
478

479 tic
480

481 for o = 1:length(phi)
482 sumth = 0;
483 sumph = 0;
484 % Loop over aperture (subdomains)
485 for i = 1:length(Center)
486

487 tempth = 0;
488 tempph = 0;
489

490 [p1,p2] = ind2sub(size(Z),Center(i));
491

492 % Calculate Current Subdomain
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493 sub = [ p1 + 1, p2 − 1; p1 + 1, p2; p1 + 1,...
494 p2 + 1; p1, p2 − 1; p1, p2; p1,...
495 p2 + 1; p1 − 1, p2 − 1; p1 − 1, p2; ...
496 p1 − 1, p2 + 1];
497 sub lin = sub2ind(size(Z),sub(:,1),sub(:,2));
498

499 % Loop over current subdomain
500 for q = 1:9
501

502 % Calculate exponential for integral
503 ex = exp(1i*k(ap num)* ...
504 ((x(ap num,sub(q,2))+a(ap num)/2)*...
505 sin(theta(j))*cos(phi(o)) + ...
506 (y(ap num,sub(q,1))+a(ap num)/2)*...
507 sin(theta(j))*sin(phi(o))));
508

509 % N Theta
510 tempth = tempth + wq(q)*ex*...
511 (−2*Hy(sub lin(q))*cos(theta(j))*...
512 cos(phi(o)) + 2*Hx(sub lin(q))*...
513 cos(theta(j))*sin(phi(o)));
514

515 % N Phi
516 tempph = tempph + wq(q)*ex*...
517 (2*Hy(sub lin(q))*sin(phi(o)) + ...
518 2*Hx(sub lin(q))*cos(phi(o)));
519

520 end
521 sumth = sumth + C*tempth;
522 sumph = sumph + C*tempph;
523 end
524

525 Nth(j,o) = sumth;
526 Nph(j,o) = sumph;
527 end
528

529 % Time Keeping
530 t(j) = toc;
531 end
532

533 Eth = ...
(−1i*k(ap num)*exp(−1i*k(ap num)*r).*Nth*eta)./(4*pi*r);

534 Eph = ...
(−1i*k(ap num)*exp(−1i*k(ap num)*r).*Nph*eta)./(4*pi*r);

535

536 Eff = sqrt(Eth.*conj(Eth) + Eph.*conj(Eph));
537 Eff db = 20*log10(Eff);
538

539 % Plot FF pattern
540 figure;
541 B = find(theta < 0);
542 theta(B) = theta(B) + 2*pi;
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543 polar2(theta,Eff db.');
544 xlabel('FF radiation pattern, dB','FontSize',18);
545 end

A.4 Pattern Addition Code

1 % This script takes in data from SatCom *.oaa files and
2 % combines them into a single group of data to then plot
3 % the far−field of the particular antenna. This is
4 % accomplished from pattern addition
5

6 % Housekeeping
7 clear;
8 close all;
9 clc;

10

11 %% Import Data
12

13 % Open the input files
14 fin1 = fopen('R150 RW−001500MHz.oaa','r');
15 fin2 = ...

fopen('R150 opposite orientation RW−001500MHz.oaa','r');
16

17 % Take in the header information
18 temp1 = fgetl(fin1);
19 temp2 = fgetl(fin2);
20

21 % Read in the numerical data
22 temp1 = fscanf(fin1,'%f, %f, %f, %f, %f\n');
23 temp2 = fscanf(fin2,'%f, %f, %f, %f, %f\n');
24

25 % Check to be sure that data files were the same length
26 if length(temp1) == length(temp2)
27

28 THETA = zeros(1,length(temp1)/5−1);
29 E TH DB1 = zeros(1,length(temp1)/5−1);
30 E TH DB2 = zeros(1,length(temp1)/5−1);
31 E TH DG1 = zeros(1,length(temp1)/5−1);
32 E TH DG2 = zeros(1,length(temp1)/5−1);
33 E PH DB1 = zeros(1,length(temp1)/5−1);
34 E PH DB2 = zeros(1,length(temp1)/5−1);
35 E PH DG1 = zeros(1,length(temp1)/5−1);
36 E PH DG2 = zeros(1,length(temp1)/5−1);
37

38 % Separate the data
39 for i = 0:(length(temp1)/5−1)
40 THETA(i + 1) = temp1(1+5*i);
41
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42 E TH DB1(i + 1) = temp1(2+5*i);
43 E TH DB2(i + 1) = temp2(2+5*i);
44

45 E TH DG1(i + 1) = temp1(3+5*i);
46 E TH DG2(i + 1) = temp2(3+5*i);
47

48 E PH DB1(i + 1) = temp1(4+5*i);
49 E PH DB2(i + 1) = temp2(4+5*i);
50

51 E PH DG1(i + 1) = temp1(5+5*i);
52 E PH DG2(i + 1) = temp2(5+5*i);
53 end
54 else
55

56 % Separate the data
57 for i = 0:(length(temp1)/5−1)
58 THETA1(i + 1) = temp1(1+5*i);
59 E TH DB1(i + 1) = temp1(2+5*i);
60 E TH DG1(i + 1) = temp1(3+5*i);
61 E PH DB1(i + 1) = temp1(4+5*i);
62 E PH DG1(i + 1) = temp1(5+5*i);
63 end
64 for i = 0:(length(temp2)/5−1)
65 THETA2(i + 1) = temp2(1+5*i);
66 E TH DB2(i + 1) = temp2(2+5*i);
67 E TH DG2(i + 1) = temp2(3+5*i);
68 E PH DB2(i + 1) = temp2(4+5*i);
69 E PH DG2(i + 1) = temp2(5+5*i);
70 end
71 end
72

73 % Free up memory
74 clear temp1 temp2
75

76 % Close input files
77 fclose(fin1);
78 fclose(fin2);
79

80 %% Pattern Addition
81

82 % Create Phi vector
83 PHI = 0:1:360;
84

85 % Change phase components to radians for coherent summation
86 E TH R1 = E TH DG1.*(pi/180);
87 E TH R2 = E TH DG2.*(pi/180);
88 E PH R1 = E PH DG1.*(pi/180);
89 E PH R2 = E PH DG2.*(pi/180);
90

91 % Theta component pattern addition
92 % E TH DB = E TH DB1 + E TH DB2;
93 E TH linear = (10.ˆ(E TH DB1./20) + 10.ˆ(E TH DB2./20)).*...
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94 exp(−1i*(E TH R1 + E TH R2));
95

96 % Phi component pattern addition
97 % E PH DB = E PH DB1 + E PH DB2;
98 E PH linear = (10.ˆ(E PH DB1./20) + 10.ˆ(E PH DB2./20)).*...
99 exp(−1i*(E PH R1 + E PH R2));

100

101 %% 3D plots
102

103 % Reformat the data
104 I = find(THETA == 0);
105 dtheta = mean(diff(I));
106 E TH linear = reshape(E TH linear,dtheta,length(PHI));
107 E TH DB = 20.*log10(abs(E TH linear));
108

109 E PH linear = reshape(E PH linear,dtheta,length(PHI));
110 E PH DB = 20.*log10(abs(E PH linear));
111

112 % Plot the theta component of the E−field in dB
113 figure;
114 sphere3d(E TH DB,−pi,pi,−pi/2,pi/2, ...
115 max(max(E TH DB)),2,'surf');
116 colorbar('off');
117 title('Theta component of FF E−field, dB');
118

119 % Plot the phi component of the E−field in dB
120 figure;
121 sphere3d(E PH DB,−pi,pi,−pi/2,pi/2, ...
122 max(max(E PH DB)),2,'surf');
123 colorbar('off');
124 title('Phi component of FF E−field, dB');
125

126 % Plot the E−field in dB
127 figure;
128 E abs = sqrt(E TH linear.*conj(E TH linear) + ...
129 E PH linear.*conj(E PH linear));
130 E DB = 20*log10(E abs);
131 sphere3d(E DB,−pi,pi,−pi/2,pi/2,1,1,'surf');
132 colorbar('off');
133 title('FF E−field, dB');

128



Bibliography

[1] G. Hyde and R. C. Spencer, “Studies of the focal region of a spherical reflector:
Geometric optics,” IEEE Transactions on Antennas and Propagation, vol. AP-16,
pp. 317–324, May 1968.

[2] C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition. Hoboken, NJ:
John Wiley & Sons Inc., 2005.

[3] R. Harrington, Time-Harmonic Electromagnetic Fields. McGraw-Hill, Inc., 1961.

[4] W. A. Imbriale, Large Antennas of the Deep Space Network. Hoboken, NJ: John Wiley
& Sons Inc., 2003.

[5] S. V. Hoerner, “Arecibo three-mirror systems: Optimizing the optics,” Engineering
Division Internal Report 112, National Radio Astronomy Observatory, Green Bank,
WV, February 1983.

[6] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. New York: John Wiley
& Sons Inc., 1998.

[7] T. Li, “A study of spherical reflectors as wide-angle scanning antennas,” IRE
Transactions Antennas Propagation, vol. AP-7, pp. 223–226, July 1959.

[8] J. L. Volakis, Antenna Engineering Handbook, Fourth Edition. New York, NY:
McGraw-Hill Companies, 2007.

[9] R. Kaplan and J. L. Schultz, “Deployable reflector structure,” 06 1977.

[10] I. Stern, “Deployable reflector antenna with tensegrity support architecture and
associated methods,” 04 2003.

[11] Y. Rahmat-Samii, A. Zaghloul, and A. Williams, “Large deployable antennas for
satellite communications,” IEEE, 2000.

[12] M. W. Thomson, “The astromesh deployable reflector,” IEEE, 1999.

[13] R. Freeland, G. Bilyeu, G. Veal, and M. Mikulas, “Inflatable deployable space
structures technology summary,” 49th International Astronautical Congress, 1998.

[14] J. Goodman, Introduction to Fourier Optics, Second Edition. Greenwood Village, CO:
Roberts & Co Publishers, 2005.

[15] G. Hyde, “Studies of the focal region of a spherical reflector: Stationary phase
evaluation,” IEEE Transactions on Antennas and Propagation, vol. AP-16, pp. 646–
656, November 1968.

129



[16] C. A. Balanis, Advanced Engineering Electromagnetics, Second Edition. Hoboken,
NJ: John Wiley & Sons Inc., 2012.

[17] P. Beckmann, The Depolarization of Electromagnetic Waves. Boulder, CO: The Golem
Press, 1968.

[18] K. F. Warnick, Numerical Methods For Engineering: An Introduction Using MATLAB
and Computational Electromagnetics Examples, First Edition. Edison, NJ: SciTech
Publishing, 2011.

[19] A. Love, “The integration of the equations of propagation of electric waves,” Phil.
Trans. Roy. Soc. London, Ser. A, vol. 197, pp. 1–45, 1901.

[20] A. Schell, “The diffraction theory of large aperture spherical reflector antennas,” IEEE
Transactions on Antennas and Propagation, vol. AP-11, pp. 428–432, July 1963.

[21] A. J. Terzuoli, “Class notes, eeng-625, em waves - maxwellian theory made elegant.”

[22] S. Schelkunoff, “Some equivalence theorems of electromagnetics and their application
to radiation problems,” Bell System Tech. J., vol. 15, pp. 92–112, 1936.

[23] M. O. Sadiku, “A simple introduction to finite element analysis,” IEEE Transactions
on Education, vol. 32, pp. 85–93, January 1989.

[24] L. R. Burchett, “Class report, diffraction analysis of rimshot antenna using fourier and
rayleigh-sommerfield methods.”

[25] Scitor, “Space-track,” February 2012.

[26] C. Lee, S. Lee, and S. Chuang, “Plot of modal field distributions for rectangular and
circular waveguides,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-33,
no. 3, pp. 271–274, 1985.

[27] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with
Formulas, Graphs, and Mathematical Tables. Mineola, NY: Dover Publications,
1964.

[28] F. Holt and E. Bouche, “A gregorian corrector for spherical reflectors,” IEEE
Transactions on Antennas and Propagation, pp. 44–47, January 1964.

[29] G. McCormick, “A line feed for a spherical reflector,” IEEE Transactions on Antennas
and Propagation, vol. AP-15, pp. 639–645, September 1967.

130



Vita

The author Joshua Michael Wilson was born in Middletown, OH on November 28,

1988. He was raised and attended grade school in Trenton, OH. He later attended Wright

State University in Dayton, OH from 2007-2011 and received a Bachelor of Science in

Electrical Engineering with a minor in Computer Science in 2011. He began work toward

a Master of Science in Electrical Engineering at the Air Force Institute of Technology on

Wright-Patterson Air Force Base, Dayton, OH in the winter of 2012.

131



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

13–06–2013 Master’s Thesis Jan 2012–Jun 2013

The Design and Analysis of Electrically Large
Custom-Shaped Reflector Antennas

Wilson, Joshua M., Civilian Student, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-J-08

Intentionally Left Blank

Intentionally Left Blank

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Designing and analyzing electrically large reflectors poses numerically complex problems because the reflector must be
sampled finely to obtain an accurate solution, causing an unwieldy number of samples. In addition to these complexities,
a custom-shaped reflector poses a new analysis problem. Previously developed methods and theorems including
Geometric Optics, Ray-Tracing, Surface Equivalence Theorems, Image Theory, and Physical Optics can be applied to
these custom-shaped reflectors however. These methods all share in common their capability to provide accurate results
in the analysis of electrically large structures. In this thesis, two custom-shaped reflector concepts are explored which
include a rectangular shaped, spherically contoured reflector with largest dimension of 305 meters and a cross-shaped,
parabolically contoured reflector with largest dimension of 150 meters. Each reflector is intended to operate in the
Institute of Electrical and Electronics Engineers (IEEE) L-Band. The reflectors produced differing results, but the same
methods apply to each. The motivation for pursuing these custom-shaped reflectors is for earth-based and space-based
satellite communications respectively. In this thesis, the plane wave analysis and the ray tracing results are presented for
each reflector, and the initial feed design results for the cross-shaped reflector are presented.

15. SUBJECT TERMS

Reflector, Antenna, Electrically Large, Custom-Shaping

U U U UU 151

Andrew J. Terzuoli (ENG)

(937) 255-3636 x4717 andrew.terzuoli@afit.edu


	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Background
	Assumptions, Limitations, and Standards
	Approach and Methodology
	Materials & Equipment
	Scope
	Overview

	Background & Literature Review
	Geometric Optics (GO)
	Solutions to Maxwell's Equations in the Far-Field (FF) Using Vector Potentials
	The Physical Optics (PO) Approximation and Equivalence Theorems
	Two-Dimensional Transverse Magnetic (TM)z and Transverse Electric (TE)z Field Set Relations
	Reciprocity of Antenna FF Radiation Patterns
	Overview of Method of Moments (MoM)

	Methodology
	Geometrical Analysis
	Plane Wave Analysis
	Sky Study for the Rectangular Shaped, Spherically Contoured Reflector
	Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector
	Feed Design for the Cross-shaped, Parabolically Contoured Reflector

	Results & Analysis
	Geometrical Analysis
	Plane Wave Analysis
	Sky Study for the Rectangular Shaped, Spherically Contoured Reflector
	Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector Geometry
	Feed Design for the Cross-shaped, Parabolically Contoured Reflector Geometry

	Discussion
	Geometrical Analysis
	Plane Wave Analysis
	Sky Study for the Rectangular, Spherically Contoured Reflector
	Baseline Calculation for the Cross-shaped, Parabolically Contoured Reflector Geometry
	Feed Design for the Cross-shaped, Parabolically Contoured Reflector Geometry
	Future Work

	Appendix: MATLAB Code
	Ray-Tracing Code for Rectangular Shaped, Spherically Contoured Reflector
	Ray-Tracing Code for Cross-Shaped, Parabolically Contoured Reflector
	FF Radiation Pattern Computation Code Using FD Eigenmode Analysis to Determine Equivalent Sources
	Pattern Addition Code

	Bibliography
	Vita

